Facial Plast Surg 2010; 26(5): 405-412
DOI: 10.1055/s-0030-1265021
© Thieme Medical Publishers

Embryonic Progenitor Cells in Adipose Tissue Engineering

Alexander T. Hillel1 , Jennifer H. Elisseeff2
  • 1Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
Further Information

Publication History

Publication Date:
17 September 2010 (online)

ABSTRACT

Adipose tissue is extensively used in facial plastic surgery as a soft tissue filler for small-to-large facial defects. Variable results with autologous fat grafting and lipoinjection has led to interest in alternative forms of adipose tissue, including tissue engineered adipose tissue. Tissue engineering combines cells, scaffolds, and bioactive signals to regenerate organs or tissue. Cell sources include preadipocytes, adult stem cells, and embryonic stem cells. Although adult cells may be easily accessible from a patient, embryonic progenitor cells have comparative advantages over adult stem cells including indefinite self-renewal (high proliferative and expansion capacity) and strong tissue-forming capacity. This article will describe the types of embryonic progenitor cells and the cell culture conditions, common biomaterials, signaling factors, and biomechanical forces used in adipose tissue engineering. We will identify optimal conditions to generate functional, long-lasting adipose-like tissue. Lastly, we will propose potential future directions for the rapidly expanding field of adipose tissue engineering.

REFERENCES

  • 1 American Society of Plastic Surgeons .2007 National Plastic Surgery Statistics. April 30, 2010 Available at: http://www.plasticsurgery.org/Documents/Media/statistics/2007-full-statstics-report.pdf
  • 2 Mooney D J, Mikos A G. Growing new organs.  Sci Am. 1999;  280 60-65
  • 3 Sharma B, Elisseeff J H. Engineering structurally organized cartilage and bone tissues.  Ann Biomed Eng. 2004;  32 148-159
  • 4 von Heimburg D, Zachariah S, Low A, Pallua N. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells.  Plast Reconstr Surg. 2001;  108 411-420 discussion 421-422
  • 5 Pittenger M F, Mackay A M, Beck S C et al.. Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;  284 143-147
  • 6 Choi Y S, Park S N, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres.  Biomaterials. 2005;  26 5855-5863
  • 7 Hong L, Peptan I A, Colpan A, Daw J L. Adipose tissue engineering by human adipose-derived stromal cells.  Cells Tissues Organs. 2006;  183 133-140
  • 8 Mauney J R, Nguyen T, Gillen K, Kirker-Head C, Gimble J M, Kaplan D L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds.  Biomaterials. 2007;  28 5280-5290
  • 9 Liu J, Hu Q, Wang Z et al.. Autologous stem cell transplantation for myocardial repair.  Am J Physiol Heart Circ Physiol. 2004;  287 H501-H511
  • 10 Barberi T, Willis L M, Socci N D, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.  PLoS Med. 2005;  2 e161
  • 11 Dani C, Smith A G, Dessolin S et al.. Differentiation of embryonic stem cells into adipocytes in vitro.  J Cell Sci. 1997;  110(Pt 11) 1279-1285
  • 12 Xiong C, Xie C Q, Zhang L et al.. Derivation of adipocytes from human embryonic stem cells.  Stem Cells Dev. 2005;  14 671-675
  • 13 Hwang N S, Varghese S, Lee H J et al.. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells.  Proc Natl Acad Sci U S A. 2008;  105 20641-20646
  • 14 Hillel A T, Varghese S, Petsche J, Shamblott M J, Elisseeff J H. Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo.  Tissue Eng Part A. 2009;  15 479-486
  • 15 Thomson J A, Itskovitz-Eldor J, Shapiro S S et al.. Embryonic stem cell lines derived from human blastocysts.  Science. 1998;  282 1145-1147
  • 16 Shamblott M J, Axelman J, Wang S et al.. Derivation of pluripotent stem cells from cultured human primordial germ cells.  Proc Natl Acad Sci U S A. 1998;  95 13726-13731
  • 17 Taranger C K, Noer A, Sørensen A L, Håkelien A M, Boquest A C, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells.  Mol Biol Cell. 2005;  16 5719-5735
  • 18 Lu M, Lin R Y. TSH stimulates adipogenesis in mouse embryonic stem cells.  J Endocrinol. 2008;  196 159-169
  • 19 Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells.  Bone. 2003;  33 919-926
  • 20 Kim M S, Hwang N S, Lee J et al.. Musculoskeletal differentiation of cells derived from human embryonic germ cells.  Stem Cells. 2005;  23 113-123
  • 21 Hubbell J A. Materials as morphogenetic guides in tissue engineering.  Curr Opin Biotechnol. 2003;  14 551-558
  • 22 Drury J L, Mooney D J. Hydrogels for tissue engineering: scaffold design variables and applications.  Biomaterials. 2003;  24 4337-4351
  • 23 Seliktar D. Extracellular stimulation in tissue engineering.  Ann N Y Acad Sci. 2005;  1047 386-394
  • 24 Sekiya I, Vuoristo J T, Larson B L, Prockop D J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis.  Proc Natl Acad Sci U S A. 2002;  99 4397-4402
  • 25 Caplan A I. Embryonic development and the principles of tissue engineering.  Novartis Found Symp. 2003;  249 17-25 discussion 25-33 170-174 239-241
  • 26 Flynn L, Prestwich G D, Semple J L, Woodhouse K A. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells.  Biomaterials. 2007;  28 3834-3842
  • 27 Or-Tzadikario S, Sopher R, Gefen A. Quantitative monitoring of lipid accumulation over time in cultured adipocytes as function of culture conditions: towards controlled adipose tissue engineering.  Tissue Eng Part C Methods. 2010;  , March 24 (Epub ahead of print)
  • 28 Tanzi M C, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches.  Expert Rev Med Devices. 2009;  6 533-551
  • 29 Weiser B, Prantl L, Schubert T EO et al.. In vivo development and long-term survival of engineered adipose tissue depend on in vitro precultivation strategy.  Tissue Eng Part A. 2008;  14 275-284
  • 30 Tashiro K, Kawabata K, Sakurai H et al.. Efficient adenovirus vector-mediated PPAR gamma gene transfer into mouse embryoid bodies promotes adipocyte differentiation.  J Gene Med. 2008;  10 498-507
  • 31 Hannan N RF, Wolvetang E J. Adipocyte differentiation in human embryonic stem cells transduced with Oct4 shRNA lentivirus.  Stem Cells Dev. 2009;  18 653-660
  • 32 Yamashita A, Takada T, Omatsu-Kanbe M et al.. Monkey embryonic stem cells differentiate into adipocytes in vitro.  Cloning Stem Cells. 2006;  8 3-9
  • 33 Chen T L, Shen W J, Qiu X W, Li T, Hoffman A R, Kraemer F B. Generation of novel adipocyte monolayer cultures from embryonic stem cells.  Stem Cells Dev. 2007;  16 371-380
  • 34 Monteiro M C, Wdziekonski B, Villageois P et al.. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor β and active GSK3.  Stem Cells Dev. 2009;  18 457-463
  • 35 Kang X, Xie Y, Powell H M et al.. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds.  Biomaterials. 2007;  28 450-458
  • 36 Kang S W, Seo S W, Choi C Y, Kim B S. Porous poly(lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering.  Tissue Eng Part C Methods. 2008;  14 25-34
  • 37 Lee J A, Parrett B M, Conejero J A et al.. Biological alchemy: engineering bone and fat from fat-derived stem cells.  Ann Plast Surg. 2003;  50 610-617
  • 38 Neuss S, Stainforth R, Salber J et al.. Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold.  Cell Transplant. 2008;  17 977-986
  • 39 von Heimburg D, Kuberka M, Rendchen R, Hemmrich K, Rau G, Pallua N. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering.  Int J Artif Organs. 2003;  26 1064-1076
  • 40 Taha M F, Valojerdi M R, Mowla S J. Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells.  Anat Histol Embryol. 2006;  35 271-278
  • 41 Schulz T J, Tseng Y H. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism.  Cytokine Growth Factor Rev. 2009;  20 523-531
  • 42 Stosich M S, Bastian B, Marion N W, Clark P A, Reilly G, Mao J J. Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits.  Tissue Eng. 2007;  13 2881-2890
  • 43 Frye C A, Patrick C W. Three-dimensional adipose tissue model using low shear bioreactors.  In Vitro Cell Dev Biol Anim. 2006;  42 109-114
  • 44 Shieh A C, Athanasiou K A. Principles of cell mechanics for cartilage tissue engineering.  Ann Biomed Eng. 2003;  31 1-11
  • 45 Darling E M, Athanasiou K A. Biomechanical strategies for articular cartilage regeneration.  Ann Biomed Eng. 2003;  31 1114-1124
  • 46 Mauck R L, Soltz M A, Wang C C et al.. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels.  J Biomech Eng. 2000;  122 252-260
  • 47 Chun T H, Hotary K B, Sabeh F, Saltiel A R, Allen E D, Weiss S J. A pericellular collagenase directs the 3-dimensional development of white adipose tissue.  Cell. 2006;  125 577-591
  • 48 McBeath R, Pirone D M, Nelson C M, Bhadriraju K, Chen C S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.  Dev Cell. 2004;  6 483-495
  • 49 Kruschewsky LdeS, de Mello-Filho F V, dos Santos A C, Rosen C A. Autologous fat graft absorption in unilateral paralyzed canine vocal folds.  Laryngoscope. 2007;  117 96-100
  • 50 Revazova E S, Turovets N A, Kochetkova O D et al.. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts.  Cloning Stem Cells. 2008;  10 11-24
  • 51 Deb K D, Sarda K. Human embryonic stem cells: preclinical perspectives.  J Transl Med. 2008;  6 7-14
  • 52 Shamblott M J, Axelman J, Littlefield J W et al.. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro.  Proc Natl Acad Sci U S A. 2001;  98 113-118

Jennifer H ElisseeffPh.D. 

Associate Professor, Department of Biomedical Engineering, Johns Hopkins University

Clark Hall Room 106, 3400 N. Charles Street, Baltimore, MD 21218

Email: jhe@jhu.edu

    >