Semin Respir Crit Care Med 2010; 31(5): 607-617
DOI: 10.1055/s-0030-1265901
© Thieme Medical Publishers

Aging and Interstitial Lung Diseases: Unraveling an Old Forgotten Player in the Pathogenesis of Lung Fibrosis

Moisés Selman1 , Mauricio Rojas2 , Ana L. Mora2 , Annie Pardo3
  • 1Instituto Nacional de Enfermedades Respiratorias, Tlalpan, México DF, México
  • 2Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
  • 3Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF, México
Further Information

Publication History

Publication Date:
12 October 2010 (online)

ABSTRACT

Aging is a natural process characterized by a progressive functional impairment and reduced capacity to respond adaptively to environmental stimuli. Aging is associated with increased susceptibility to a variety of chronic diseases, including type 2 diabetes mellitus, cancer, and neurological diseases. Lung pathologies are not the exception, and the prevalence of several interstitial lung diseases (ILDs), primarily idiopathic pulmonary fibrosis, has been found to increase considerably with age. Although our understanding of the biology of aging has advanced remarkably in the last 2 decades, the molecular mechanisms linking aging to ILD remain unclear. Immunosenescence, oxidative stress, abnormal shortening of telomeres, apoptosis, and epigenetic changes affecting gene expression have been proposed to contribute to the aging process, and aging-associated diseases. Here, we review the emerging concepts highlighting the putative aging-associated abnormalities involved in some human ILDs.

REFERENCES

  • 1 Harman D. Aging: overview.  Ann N Y Acad Sci. 2001;  928 1-21
  • 2 Raghu G, Weycker D, Edelsberg J, Bradford W Z, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis.  Am J Respir Crit Care Med. 2006;  174 810-816
  • 3 Huang K, Rabold R, Schofield B, Mitzner W, Tankersley C G. Age-dependent changes of airway and lung parenchyma in C57BL/6J mice.  J Appl Physiol. 2007;  102 200-206
  • 4 Briscoe W A, Dubois A B. The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size.  J Clin Invest. 1958;  37 1279-1285
  • 5 Gibson G J, Pride N B, O'cain C, Quagliato R. Sex and age differences in pulmonary mechanics in normal nonsmoking subjects.  J Appl Physiol. 1976;  41 20-25
  • 6 de la Fuente M, Hernanz A, Guayerbas N, Alvarez P, Alvarado C. Changes with age in peritoneal macrophage functions. Implication of leukocytes in the oxidative stress of senescence.  Cell Mol Biol (Noisy-le-grand). 2004;  50 Online Pub OL683-690
  • 7 Elder A C, Gelein R, Finkelstein J N, Cox C, Oberdörster G. Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin.  Inhal Toxicol. 2000;  12(Suppl 4) 227-246
  • 8 Pawelec G, Larbi A. Immunity and ageing in man: annual review 2006/2007.  Exp Gerontol. 2008;  43 34-38
  • 9 Meyer K C, Rosenthal N S, Soergel P, Peterson K. Neutrophils and low-grade inflammation in the seemingly normal aging human lung.  Mech Ageing Dev. 1998;  104 169-181
  • 10 Plackett T P, Schilling E M, Faunce D E, Choudhry M A, Witte P L, Kovacs E J. Aging enhances lymphocyte cytokine defects after injury.  FASEB J. 2003;  17 688-689
  • 11 Xu J, Mora A L, LaVoy J, Brigham K L, Rojas M. Increased bleomycin-induced lung injury in mice deficient in the transcription factor T-bet.  Am J Physiol Lung Cell Mol Physiol. 2006;  291 L658-L667
  • 12 Mora A L, Woods C R, Garcia A et al.. Lung infection with gamma-herpesvirus induces progressive pulmonary fibrosis in Th2-biased mice.  Am J Physiol Lung Cell Mol Physiol. 2005;  289 L711-L721
  • 13 Prasse A, Pechkovsky D V, Toews G B et al.. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18.  Am J Respir Crit Care Med. 2006;  173 781-792
  • 14 Murray L A, Argentieri R L, Farrell F X et al.. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2.  Int J Biochem Cell Biol. 2008;  40 2174-2182
  • 15 Jones D P. Radical-free biology of oxidative stress.  Am J Physiol Cell Physiol. 2008;  295 C849-C868
  • 16 Jones D P. Extracellular redox state: refining the definition of oxidative stress in aging.  Rejuvenation Res. 2006;  9 169-181
  • 17 Kregel K C, Zhang H J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations.  Am J Physiol Regul Integr Comp Physiol. 2007;  292 R18-R36
  • 18 Moriarty-Craige S E, Adkison J, Lynn M et al.. Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration.  Am J Ophthalmol. 2005;  140 1020-1026
  • 19 Iyer S S, Accardi C J, Ziegler T R et al.. Cysteine redox potential determines pro-inflammatory IL-1beta levels.  PLoS One. 2009;  4 e5017
  • 20 Ramirez A, Ramadan B, Ritzenthaler J D, Rivera H N, Jones D P, Roman J. Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-beta.  Am J Physiol Lung Cell Mol Physiol. 2007;  293 L972-L981
  • 21 Jonas C R, Gu L H, Nkabyo Y S et al.. Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells.  Am J Physiol Regul Integr Comp Physiol. 2003;  285 R1421-R1429
  • 22 Iyer S S, Ramirez A M, Ritzenthaler J D et al.. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.  Am J Physiol Lung Cell Mol Physiol. 2009;  296 L37-L45
  • 23 Martindale J L, Holbrook N J. Cellular response to oxidative stress: signaling for suicide and survival.  J Cell Physiol. 2002;  192 1-15
  • 24 Morrison J P, Coleman M C, Aunan E S, Walsh S A, Spitz D R, Kregel K C. Aging reduces responsiveness to BSO- and heat stress-induced perturbations of glutathione and antioxidant enzymes.  Am J Physiol Regul Integr Comp Physiol. 2005;  289 R1035-R1041
  • 25 Li J, Holbrook N J. Common mechanisms for declines in oxidative stress tolerance and proliferation with aging.  Free Radic Biol Med. 2003;  35 292-299
  • 26 Zhang H J, Xu L, Drake V J, Xie L, Oberley L W, Kregel K C. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation.  FASEB J. 2003;  17 2293-2295
  • 27 Zhang H J, Doctrow S R, Xu L et al.. Redox modulation of the liver with chronic antioxidant enzyme mimetic treatment prevents age-related oxidative damage associated with environmental stress.  FASEB J. 2004;  18 1547-1549
  • 28 Hussain S G, Ramaiah K V. Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging.  Biochem Biophys Res Commun. 2007;  355 365-370
  • 29 Naidoo N. The endoplasmic reticulum stress response and aging.  Rev Neurosci. 2009;  20 23-37
  • 30 Wang X Z, Lawson B, Brewer J W et al.. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153).  Mol Cell Biol. 1996;  16 4273-4280
  • 31 Ikeyama S, Wang X T, Li J et al.. Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury.  J Biol Chem. 2003;  278 16726-16731
  • 32 Lawson W E, Crossno P F, Polosukhin V V et al.. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection.  Am J Physiol Lung Cell Mol Physiol. 2008;  294 L1119-L1126
  • 33 Korfei M, Ruppert C, Mahavadi P et al.. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis.  Am J Respir Crit Care Med. 2008;  178 838-846
  • 34 Ulianich L, Garbi C, Treglia A S et al.. ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells.  J Cell Sci. 2008;  121(Pt 4) 477-486
  • 35 Cuervo A M. Autophagy and aging: keeping that old broom working.  Trends Genet. 2008;  24 604-612
  • 36 Cuervo A M, Bergamini E, Brunk U T, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells.  Autophagy. 2005;  1 131-140
  • 37 Levine B, Kroemer G. Autophagy in aging, disease and death: the true identity of a cell death impostor.  Cell Death Differ. 2009;  16 1-2
  • 38 Hornsby P J. Telomerase and the aging process.  Exp Gerontol. 2007;  42 575-581
  • 39 Tsakiri K D, Cronkhite J T, Kuan P J et al.. Adult-onset pulmonary fibrosis caused by mutations in telomerase.  Proc Natl Acad Sci U S A. 2007;  104 7552-7557
  • 40 Alder J K, Chen J J, Lancaster L et al.. Short telomeres are a risk factor for idiopathic pulmonary fibrosis.  Proc Natl Acad Sci U S A. 2008;  105 13051-13056
  • 41 Mora A L, Rojas M. Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells.  J Cell Biochem. 2008;  105 641-647
  • 42 Conboy I M, Conboy M J, Wagers A J, Girma E R, Weissman I L, Rando T A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment.  Nature. 2005;  433 760-764
  • 43 Rojas M, Xu J, Woods C R et al.. Bone marrow-derived mesenchymal stem cells in repair of the injured lung.  Am J Respir Cell Mol Biol. 2005;  33 145-152
  • 44 Xu J, Torres E, Mora A L et al.. Attenuation of obliterative bronchiolitis by a CXCR4 antagonist in the murine heterotopic tracheal transplant model.  J Heart Lung Transplant. 2008;  27 1302-1310
  • 45 Phillips R J, Burdick M D, Hong K et al.. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis.  J Clin Invest. 2004;  114 438-446
  • 46 Hashimoto N, Jin H, Liu T, Chensue S W, Phan S H. Bone marrow-derived progenitor cells in pulmonary fibrosis.  J Clin Invest. 2004;  113 243-252
  • 47 Xu J, Mora A, Shim H, Stecenko A, Brigham K L, Rojas M. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis.  Am J Respir Cell Mol Biol. 2007;  37 291-299
  • 48 Andersson-Sjöland A, de Alba C G, Nihlberg K et al.. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis.  Int J Biochem Cell Biol. 2008;  40 2129-2140
  • 49 Moeller A, Gilpin S E, Ask K et al.. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis.  Am J Respir Crit Care Med. 2009;  179 588-594
  • 50 Xu J, Gonzalez E T, Iyer S S et al.. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice.  J Gerontol A Biol Sci Med Sci. 2009;  64 731-739
  • 51 Swiderski R E, Dencoff J E, Floerchinger C S, Shapiro S D, Hunninghake G W. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis.  Am J Pathol. 1998;  152 821-828
  • 52 Kim K K, Kugler M C, Wolters P J et al.. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.  Proc Natl Acad Sci U S A. 2006;  103 13180-13185
  • 53 Magnuson V L, Young M, Schattenberg D G et al.. The alternative splicing of fibronectin pre-mRNA is altered during aging and in response to growth factors.  J Biol Chem. 1991;  266 14654-14662
  • 54 Muro A F, Moretti F A, Moore B B et al.. An essential role for fibronectin extra type III domain A in pulmonary fibrosis.  Am J Respir Crit Care Med. 2008;  177 638-645
  • 55 Adamson I Y, Bowden D H. The pathogenesis of bloemycin-induced pulmonary fibrosis in mice.  Am J Pathol. 1974;  77 185-197
  • 56 McMillan T R, Moore B B, Weinberg J B et al.. Exacerbation of established pulmonary fibrosis in a murine model by gammaherpesvirus.  Am J Respir Crit Care Med. 2008;  177 771-780
  • 57 Sime P J, Xing Z, Graham F L, Csaky K G, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung.  J Clin Invest. 1997;  100 768-776
  • 58 Uejima Y, Fukuchi Y, Nagase T, Tabata R, Orimo H. A new murine model of aging lung: the senescence accelerated mouse (SAM)-P.  Mech Ageing Dev. 1991;  61 223-236
  • 59 Selman M, King T E, Pardo A. American Thoracic Society . Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.  Ann Intern Med. 2001;  134 136-151
  • 60 Gross T J, Hunninghake G W. Idiopathic pulmonary fibrosis.  N Engl J Med. 2001;  345 517-525
  • 61 Noth I, Martinez F J. Recent advances in idiopathic pulmonary fibrosis.  Chest. 2007;  132 637-650
  • 62 Gotway M B, Freemer M M, King Jr T E. Challenges in pulmonary fibrosis. 1: Use of high resolution CT scanning of the lung for the evaluation of patients with idiopathic interstitial pneumonias.  Thorax. 2007;  62 546-553
  • 63 Katzenstein A L, Mukhopadhyay S, Myers J L. Diagnosis of usual interstitial pneumonia and distinction from other fibrosing interstitial lung diseases.  Hum Pathol. 2008;  39 1275-1294
  • 64 King Jr T E, Tooze J A, Schwarz M I, Brown K R, Cherniack R M. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model.  Am J Respir Crit Care Med. 2001;  164 1171-1181
  • 65 von Figura G, Hartmann D, Song Z, Rudolph K L. Role of telomere dysfunction in aging and its detection by biomarkers.  J Mol Med. 2009;  87 1165-1171
  • 66 Armanios M. Syndromes of telomere shortening.  Annu Rev Genomics Hum Genet. 2009;  10 45-61
  • 67 Oeseburg H, de Boer R A, van Gilst W H, van der Harst P. Telomere biology in healthy aging and disease.  Pflugers Arch. 2010;  459 259-268
  • 68 Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss.  Science. 2002;  295 2446-2449
  • 69 Armanios M Y, Chen J J, Cogan J D et al.. Telomerase mutations in families with idiopathic pulmonary fibrosis.  N Engl J Med. 2007;  356 1317-1326
  • 70 Cronkhite J T, Xing C, Raghu G et al.. Telomere shortening in familial and sporadic pulmonary fibrosis.  Am J Respir Crit Care Med. 2008;  178 729-737
  • 71 Barja G. Free radicals and aging.  Trends Neurosci. 2004;  27 595-600
  • 72 Kuwano K, Hagimoto N, Maeyama T et al.. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias.  Lab Invest. 2002;  82 1695-1706
  • 73 Bellocq A, Azoulay E, Marullo S et al.. Reactive oxygen and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms.  Am J Respir Cell Mol Biol. 1999;  21 128-136
  • 74 Barcellos-Hoff M H, Dix T A. Redox-mediated activation of latent transforming growth factor-beta 1.  Mol Endocrinol. 1996;  10 1077-1083
  • 75 Ho D H, Burggren W W. Epigenetics and transgenerational transfer: a physiological perspective.  J Exp Biol. 2010;  213 3-16
  • 76 Gravina S, Vijg J. Epigenetic factors in aging and longevity.  Pflugers Arch. 2010;  459 247-258
  • 77 Sanders Y Y, Pardo A, Selman M et al.. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis.  Am J Respir Cell Mol Biol. 2008;  39 610-618
  • 78 Coward W R, Watts K, Feghali-Bostwick C A, Knox A, Pang L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis.  Mol Cell Biol. 2009;  29 4325-4339
  • 79 Prelog M. Aging of the immune system: a risk factor for autoimmunity?.  Autoimmun Rev. 2006;  5 136-139
  • 80 Manestar-Blazić T, Volf M. The dynamic of senescent cells accumulation can explain the age-specific incidence of autoimmune diseases.  Med Hypotheses. 2009;  73 667-669
  • 81 Pawelec G, Hirokawa K, Fülöp T. Altered T cell signalling in ageing.  Mech Ageing Dev. 2001;  122 1613-1637
  • 82 Goronzy J J, Weyand C M. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation.  Arthritis Res Ther. 2003;  5 225-234
  • 83 Liu Y, Chen Y, Richardson B. Decreased DNA methyltransferase levels contribute to abnormal gene expression in “senescent” CD4( + )CD28(-) T cells.  Clin Immunol. 2009;  132 257-265
  • 84 Hasler P, Zouali M. Immune receptor signaling, aging, and autoimmunity.  Cell Immunol. 2005;  233 102-108
  • 85 Grolleau-Julius A, Ray D, Yung R L. The role of epigenetics in aging and autoimmunity.  Clin Rev Allergy Immunol. 2010;  39 42-50
  • 86 Rifas L, Arackal S. T cells regulate the expression of matrix metalloproteinase in human osteoblasts via a dual mitogen-activated protein kinase mechanism.  Arthritis Rheum. 2003;  48 993-1001
  • 87 Kim E J, Collard H R, King Jr T E. Rheumatoid arthritis-associated interstitial lung disease: the relevance of histopathologic and radiographic pattern.  Chest. 2009;  136 1397-1405
  • 88 Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity.  J Autoimmun. 2010;  34 J258-265
  • 89 Alamanos Y, Drosos A A. Epidemiology of adult rheumatoid arthritis.  Autoimmun Rev. 2005;  4 130-136
  • 90 Doran M F, Pond G R, Crowson C S, O'Fallon W M, Gabriel S E. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period.  Arthritis Rheum. 2002;  46 625-631
  • 91 Koetz K, Bryl E, Spickschen K, O'Fallon W M, Goronzy J J, Weyand C M. T cell homeostasis in patients with rheumatoid arthritis.  Proc Natl Acad Sci U S A. 2000;  97 9203-9208
  • 92 Thewissen M, Linsen L, Somers V, Geusens P, Raus J, Stinissen P. Premature immunosenescence in rheumatoid arthritis and multiple sclerosis patients.  Ann N Y Acad Sci. 2005;  1051 255-262
  • 93 Weyand C M, Fujii H, Shao L, Goronzy J J. Rejuvenating the immune system in rheumatoid arthritis.  Nat Rev Rheumatol. 2009;  5 583-588
  • 94 Fujii H, Shao L, Colmegna I, Goronzy J J, Weyand C M. Telomerase insufficiency in rheumatoid arthritis.  Proc Natl Acad Sci U S A. 2009;  106 4360-4365
  • 95 Wagner U G, Koetz K, Weyand C M, Goronzy J J. Perturbation of the T cell repertoire in rheumatoid arthritis.  Proc Natl Acad Sci U S A. 1998;  95 14447-14452
  • 96 Tarjanyi O, Boldizsar F, Nemeth P, Mikecz K, Glant T T. Age-related changes in arthritis susceptibility and severity in a murine model of rheumatoid arthritis.  Immun Ageing. 2009;  6 8
  • 97 Kuro-o M. Disease model: human aging.  Trends Mol Med. 2001;  7 179-181
  • 98 Kuro-o M, Matsumura Y, Aizawa H et al.. Mutation of the mouse klotho gene leads to a syndrome resembling ageing.  Nature. 1997;  390 45-51
  • 99 Kuro-o M. Klotho.  Pflugers Arch. 2010;  459 333-343
  • 100 Witkowski J M, Soroczyńska-Cybula M, Bryl E, Smoleńska Z, Jóźwik A. Klotho—a common link in physiological and rheumatoid arthritis-related aging of human CD4 + lymphocytes.  J Immunol. 2007;  178 771-777

Moisés SelmanM.D. 

Instituto Nacional de Enfermedades Respiratorias

Tlalpan 4502, CP 14080, México DF, México

Email: mselmanl@yahoo.com.mx