Semin Thromb Hemost 2010; 36(8): 807-818
DOI: 10.1055/s-0030-1267034
© Thieme Medical Publishers

Overcoming Limitations of Microparticle Measurement by Flow Cytometry

Romaric Lacroix1 , 2 , Stephane Robert1 , Philippe Poncelet3 , Françoise Dignat-George1 , 2
  • 1UMR-S608 INSERM, F-Marseille, and Faculté de Pharmacie, Université de la Méditerranée, F-Marseille, France
  • 2Service d'hématologie, CHU La Conception, F-Marseille, France
  • 3Biocytex, Marseille, France
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

Circulating microparticles are submicron vesicles released from cell membranes in response to activation or apoptosis. Acknowledgment of their role both as markers and pathogenic effectors in thrombosis, inflammation, and the spread of cancer has increased the interest of their measurement in clinical practice. However, assessment of their clinical use is impeded by technological issues. Among the different methodologies available, flow cytometry is the most commonly used technique. This review addresses flow cytometry limitations in microparticle measurement that may be subdivided into three domains: sizing, probing, and counting. This article also covers the various standardization strategies and technological improvements that have been proposed to overcome these limitations. New tools using size-calibrated beads and recent progress in instrumentation have opened new avenues to improve detection of microparticle populations of smaller sizes. Significant optimization in microparticle detection is also expected from the use of new fluorescent dyes and the establishment of practical recommendations. Finally, absolute counting of microparticles will also benefit from adapted bead-based strategies or, alternatively, from the generalized availability of volumetric systems. Overall, recent technological improvements maintain flow cytometry as a highly competitive analytical method to measure microparticles. Challenging these evolutions in pathological situations is a mandatory step to validate their real impact in clinical practice.

REFERENCES

  • 1 Freyssinet J M, Dignat-George F. More on: measuring circulating cell-derived microparticles.  J Thromb Haemost. 2005;  3(3) 613-614
  • 2 Heijnen H F, Schiel A E, Fijnheer R, Geuze H J, Sixma J J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules.  Blood. 1999;  94(11) 3791-3799
  • 3 Lynch S F, Ludlam C A. Plasma microparticles and vascular disorders.  Br J Haematol. 2007;  137(1) 36-48
  • 4 Piccin A, Murphy W G, Smith O P. Circulating microparticles: pathophysiology and clinical implications.  Blood Rev. 2007;  21(3) 157-171
  • 5 Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression.  Cell Cycle. 2009;  8(13) 2014-2018
  • 6 Davizon P, López J A. Microparticles and thrombotic disease.  Curr Opin Hematol. 2009;  16(5) 334-341
  • 7 Ardoin S P, Shanahan J C, Pisetsky D S. The role of microparticles in inflammation and thrombosis.  Scand J Immunol. 2007;  66(2–3) 159-165
  • 8 Boulanger C M, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease.  Hypertension. 2006;  48(2) 180-186
  • 9 Diamant M, Tushuizen M E, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease?.  Eur J Clin Invest. 2004;  34(6) 392-401
  • 10 Zwicker J I, Liebman H A, Neuberg D et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy.  Clin Cancer Res. 2009;  15(22) 6830-6840
  • 11 Morel O, Toti F, Hugel B et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2594-2604
  • 12 Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence.  J Cell Mol Med. 2009;  13(3) 454-471
  • 13 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 14 Dignat-George F, Freyssinet J M. Questionnaire on Microparticle Detection and Characterization: A Retrospective Analysis. Sydney, Australia; Vascular Biology Working Group SSC ISTH 2005
  • 15 Sims P J, Rollins S A, Wiedmer T. Regulatory control of complement on blood platelets. Modulation of platelet procoagulant responses by a membrane inhibitor of the C5b-9 complex.  J Biol Chem. 1989;  264(32) 19228-19235
  • 16 Abrams C S, Ellison N, Budzynski A Z, Shattil S J. Direct detection of activated platelets and platelet-derived microparticles in humans.  Blood. 1990;  75(1) 128-138
  • 17 Suzuki M, Kawakatsu T, Miyake T et al. Platelet-derived microparticles in alloxan-induced diabetes in rabbits.  Haemostasis. 1996;  26(4) 228-232
  • 18 Nieuwland R, Berckmans R J, Rotteveel-Eijkman R C et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant.  Circulation. 1997;  96(10) 3534-3541
  • 19 Combes V, Simon A C, Grau G E et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.  J Clin Invest. 1999;  104(1) 93-102
  • 20 Shet A S, Aras O, Gupta K et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes.  Blood. 2003;  102(7) 2678-2683
  • 21 Reininger A J, Heijnen H F, Schumann H, Specht H M, Schramm W, Ruggeri Z M. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress.  Blood. 2006;  107(9) 3537-3545
  • 22 Wencel-Drake J D, Dieter M G, Lam S C. Immunolocalization of beta 1 integrins in platelets and platelet-derived microvesicles.  Blood. 1993;  82(4) 1197-1203
  • 23 Yuana Y, Oosterkamp T H, Bahatyrova S et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles.  J Thromb Haemost. 2010;  8(2) 315-323
  • 24 Miyamoto S, Marcinkiewicz C, Edmunds Jr L H, Niewiarowski S. Measurement of platelet microparticles during cardiopulmonary bypass by means of captured ELISA for GPIIb/IIIa.  Thromb Haemost. 1998;  80(2) 225-230
  • 25 Osumi K, Ozeki Y, Saito S et al. Development and assessment of enzyme immunoassay for platelet-derived microparticles.  Thromb Haemost. 2001;  85(2) 326-330
  • 26 Nomura S, Shouzu A, Taomoto K et al. Assessment of an ELISA kit for platelet-derived microparticles by joint research at many institutes in Japan.  J Atheroscler Thromb. 2009;  16(6) 878-887
  • 27 Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y. Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome.  Thromb Haemost. 2003;  89(3) 506-512
  • 28 Ueba T, Haze T, Sugiyama M et al. Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome.  Thromb Haemost. 2008;  100(2) 280-285
  • 29 Michelsen A E, Wergeland R, Stokke O, Brosstad F. Development of a time-resolved immunofluorometric assay for quantifying platelet-derived microparticles in human plasma.  Thromb Res. 2006;  117(6) 705-711
  • 30 Exner T, Joseph J, Low J, Connor D, Ma D. A new activated factor X-based clotting method with improved specificity for procoagulant phospholipid.  Blood Coagul Fibrinolysis. 2003;  14(8) 773-779
  • 31 Al-Massarani G, Vacher-Coponat H, Paul P et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles.  Am J Transplant. 2009;  9(3) 550-557
  • 32 Macey M G, Bevan S, Alam S et al. Platelet activation and endogenous thrombin potential in pre-eclampsia.  Thromb Res. 2010;  125(3) e76-e81
  • 33 Gonzalez M, Carlo A, Poncelet P, Boulay-Moine D, Nicham F, Arnaud E, Contant G, Woodhams B. Sensitivity of 2 functional haemostasis assays to platelet-derived microparticles (PMP).  J Thromb Haemost. 2009;  7(Suppl 2) , Abstract PP-MO-766
  • 34 Mallat Z, Benamer H, Hugel B et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes.  Circulation. 2000;  101(8) 841-843
  • 35 Hugel B, Socié G, Vu T et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia.  Blood. 1999;  93(10) 3451-3456
  • 36 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 37 Maurer-Spurej E, Brown K, Labrie A, Marziali A, Glatter O. Portable dynamic light scattering instrument and method for the measurement of blood platelet suspensions.  Phys Med Biol. 2006;  51(15) 3747-3758
  • 38 Lawrie A S, Albanyan A, Cardigan R A, Mackie I J, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma.  Vox Sang. 2009;  96(3) 206-212
  • 39 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 40 Perez-Pujol S, Marker P H, Key N S. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer.  Cytometry A. 2007;  71(1) 38-45
  • 41 Mullaney P F, Van Dilla M A, Coulter J R, Dean P N. Cell sizing: a light scattering photometer for rapid volume determination.  Rev Sci Instrum. 1969;  40(8) 1029-1032
  • 42 Scharf R E, Tomer A, Marzec U M, Teirstein P S, Ruggeri Z M, Harker L A. Activation of platelets in blood perfusing angioplasty-damaged coronary arteries. Flow cytometric detection.  Arterioscler Thromb. 1992;  12(12) 1475-1487
  • 43 Wun T, Paglieroni T, Tablin F, Welborn J, Nelson K, Cheung A. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia.  J Lab Clin Med. 1997;  129(5) 507-516
  • 44 Dehmer G J, Nichols T C, Bode A P et al. Assessment of platelet activation by coronary sinus blood sampling during balloon angioplasty and directional coronary atherectomy.  Am J Cardiol. 1997;  80(7) 871-877
  • 45 Combes V, Dignat-George F, Mutin M, Sampol J. A new flow cytometry method of platelet-derived microvesicle quantitation in plasma.  Thromb Haemost. 1997;  77(1) 220
  • 46 Nebe-von-Caron G. Standardization in microbial cytometry.  Cytometry A. 2009;  75(2) 86-89
  • 47 Shapiro H. Practical Flow Cytometry. New York, NY; Wiley-Liss 2003: 275
  • 48 Tocchetti E V, Flower R L, Lloyd J V. Assessment of in vitro-generated platelet microparticles using a modified flow cytometric strategy.  Thromb Res. 2001;  103(1) 47-55
  • 49 Bode A P, Orton S M, Frye M J, Udis B J. Vesiculation of platelets during in vitro aging.  Blood. 1991;  77(4) 887-895
  • 50 Tesselaar M E, Romijn F P, Van Der Linden I K, Prins F A, Bertina R M, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?.  J Thromb Haemost. 2007;  5(3) 520-527
  • 51 Dale G L, Remenyi G, Friese P. Quantitation of microparticles released from coated-platelets.  J Thromb Haemost. 2005;  3(9) 2081-2088
  • 52 Simak J, Holada K, Risitano A M, Zivny J H, Young N S, Vostal J G. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria.  Br J Haematol. 2004;  125(6) 804-813
  • 53 Simak J, Gelderman M P, Yu H, Wright V, Baird A E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome.  J Thromb Haemost. 2006;  4(6) 1296-1302
  • 54 Robert S, Poncelet P, Lacroix R et al. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?.  J Thromb Haemost. 2009;  7(1) 190-197
  • 55 Lacroix R, Poncelet P, Robert S, Key N, Dignat-George F. Standardization of flow cytometry-based enumeration of platelet microparticles using calibrated beads: results of instrument qualification.  J Thromb Haemost. 2009;  7(Suppl 2) , In press
  • 56 Lacroix R, Robert S, Poncelet P et al.. Standardisation of platelet-derived microparticle enumeration by flow cytometry using calibrated beads; results of ISTH SSC Collaborative Workshop.  J Thromb Haemost. 2010;  , In press
  • 57 Shattil S J, Cunningham M, Hoxie J A. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry.  Blood. 1987;  70(1) 307-315
  • 58 Sims P J, Faioni E M, Wiedmer T, Shattil S J. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity.  J Biol Chem. 1988;  263(34) 18205-18212
  • 59 Shattil S J. Expression, regulation and detection of fibrinogen receptors on activated human platelets. In: Jamieson GA Platelet Menbrane Receptors: Biochemistry, Immunology and Pathology. New York, NY; Liss 1988: 345
  • 60 Yano Y, Kambayashi J, Shiba E et al. The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane.  Biochem J. 1994;  299(Pt 1) 303-308
  • 61 Thiagarajan P, Tait J F. Collagen-induced exposure of anionic phospholipid in platelets and platelet-derived microparticles.  J Biol Chem. 1991;  266(36) 24302-24307
  • 62 Gemmell C H, Ramirez S M, Yeo E L, Sefton M V. Platelet activation in whole blood by artificial surfaces: identification of platelet-derived microparticles and activated platelet binding to leukocytes as material-induced activation events.  J Lab Clin Med. 1995;  125(2) 276-287
  • 63 Miyazaki Y, Nomura S, Miyake T et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles.  Blood. 1996;  88(9) 3456-3464
  • 64 Kim H K, Song K S, Lee E S et al. Optimized flow cytometric assay for the measurement of platelet microparticles in plasma: pre-analytic and analytic considerations.  Blood Coagul Fibrinolysis. 2002;  13(5) 393-397
  • 65 Jimenez J J, Jy W, Mauro L M, Horstman L L, Ahn Y S. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease.  Br J Haematol. 2001;  112(1) 81-90
  • 66 Chang C P, Zhao J, Wiedmer T, Sims P J. Contribution of platelet microparticle formation and granule secretion to the transmembrane migration of phosphatidylserine.  J Biol Chem. 1993;  268(10) 7171-7178
  • 67 Dachary-Prigent J, Freyssinet J M, Pasquet J M, Carron J C, Nurden A T. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups.  Blood. 1993;  81(10) 2554-2565
  • 68 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 69 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 70 Funakoshi T, Heimark R L, Hendrickson L E, McMullen B A, Fujikawa K. Human placental anticoagulant protein: isolation and characterization.  Biochemistry. 1987;  26(17) 5572-5578
  • 71 Reutelingsperger C P, Hornstra G, Hemker H C. Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord.  Eur J Biochem. 1985;  151(3) 625-629
  • 72 Tait J F, Gibson D, Fujikawa K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family.  J Biol Chem. 1989;  264(14) 7944-7949
  • 73 Gelderman M P, Simak J. Flow cytometric analysis of cell membrane microparticles.  Methods Mol Biol. 2008;  484 79-93
  • 74 Shet A S. Characterizing blood microparticles: technical aspects and challenges.  Vasc Health Risk Manag. 2008;  4(4) 769-774
  • 75 Jy W, Horstman L L, Jimenez J J et al. Measuring circulating cell-derived microparticles.  J Thromb Haemost. 2004;  2(10) 1842-1851
  • 76 Sabatier F, Darmon P, Hugel B et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles.  Diabetes. 2002;  51(9) 2840-2845
  • 77 Amabile N, Guérin A P, Leroyer A et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure.  J Am Soc Nephrol. 2005;  16(11) 3381-3388
  • 78 Horstman L L, Jy W, Jimenez J J, Ahn Y S. Endothelial microparticles as markers of endothelial dysfunction.  Front Biosci. 2004;  9 1118-1135
  • 79 Abid Hussein M N, Meesters E W, Osmanovic N, Romijn F P, Nieuwland R, Sturk A. Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo.  J Thromb Haemost. 2003;  1(11) 2434-2443
  • 80 Duval A, Helley D, Capron L et al. Endothelial dysfunction in systemic lupus patients with low disease activity: evaluation by quantification and characterization of circulating endothelial microparticles, role of anti-endothelial cell antibodies.  Rheumatology (Oxford). 2010;  49(6) 1049-1055
  • 81 Trummer A, De Rop C, Tiede A, Ganser A, Eisert R. Isotype controls in phenotyping and quantification of microparticles: a major source of error and how to evade it.  Thromb Res. 2008;  122(5) 691-700
  • 82 Enjeti A K, Lincz L F, Seldon M. Detection and measurement of microparticles: an evolving research tool for vascular biology.  Semin Thromb Hemost. 2007;  33(8) 771-779
  • 83 Dasgupta S K, Abdel-Monem H, Niravath P et al. Lactadherin and clearance of platelet-derived microvesicles.  Blood. 2009;  113(6) 1332-1339
  • 84 Bernimoulin M, Waters E K, Foy M et al. Differential stimulation of monocytic cells results in distinct populations of microparticles.  J Thromb Haemost. 2009;  7(6) 1019-1028
  • 85 Kendall D A, MacDonald R C. A fluorescence assay to monitor vesicle fusion and lysis.  J Biol Chem. 1982;  257(23) 13892-13895
  • 86 Albanyan A M, Murphy M F, Rasmussen J T, Heegaard C W, Harrison P. Measurement of phosphatidylserine exposure during storage of platelet concentrates using the novel probe lactadherin: a comparison study with annexin V.  Transfusion. 2009;  49(1) 99-107
  • 87 Andersen M H, Graversen H, Fedosov S N, Petersen T E, Rasmussen J T. Functional analyses of two cellular binding domains of bovine lactadherin.  Biochemistry. 2000;  39(20) 6200-6206
  • 88 Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes.  Nature. 2002;  417(6885) 182-187
  • 89 Shi J, Heegaard C W, Rasmussen J T, Gilbert G E. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature.  Biochim Biophys Acta. 2004;  1667(1) 82-90
  • 90 Reich III C F, Pisetsky D S. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis.  Exp Cell Res. 2009;  315(5) 760-768
  • 91 Ullal A J, Pisetsky D S, Reich III C F. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems.  Cytometry A. 2010;  77(3) 294-301
  • 92 Mobarrez F, Antovic J, Egberg N et al. A multicolor flow cytometric assay for measurement of platelet-derived microparticles.  Thromb Res. 2010;  125 pe 110-pe 116
  • 93 Escolar G, Krumwiede M, White J G. Organization of the actin cytoskeleton of resting and activated platelets in suspension.  Am J Pathol. 1986;  123(1) 86-94
  • 94 Orozco A F, Lewis D E. Flow cytometric analysis of circulating microparticles in plasma.  Cytometry A. 2010;  77(6) 502-514
  • 95 Rhodes N P, Shortland A P, Rattray A, Black R A, Williams D F. Activation status of platelet aggregates and platelet microparticles shed in sheared whole blood.  J Mater Sci Mater Med. 1997;  8(12) 747-751
  • 96 Ault K A, Mitchell J. Analysis of platelets by flow cytometry.  Methods Cell Biol. 1994;  42(Pt B) 275-294
  • 97 Dickerhoff R, Von Ruecker A. Enumeration of platelets by multiparameter flow cytometry using platelet-specific antibodies and fluorescent reference particles.  Clin Lab Haematol. 1995;  17(2) 163-172
  • 98 Pattanapanyasat K, Gonwong S, Chaichompoo P et al. Activated platelet-derived microparticles in thalassaemia.  Br J Haematol. 2007;  136(3) 462-471
  • 99 Matzdorff A C, Kühnel G, Kemkes-Matthes B, Pralle H. Quantitative assessment of platelets, platelet microparticles, and platelet aggregates with flow cytometry.  J Lab Clin Med. 1998;  131(6) 507-517
  • 100 Pattanapanyasat K, Noulsri E, Fucharoen S et al. Flow cytometric quantitation of red blood cell vesicles in thalassemia.  Cytometry B Clin Cytom. 2004;  57(1) 23-31
  • 101 Nantakomol D, Chimma P, Day N P et al. Quantitation of cell-derived microparticles in plasma using flow rate based calibration.  Southeast Asian J Trop Med Public Health. 2008;  39(1) 146-153
  • 102 Storie I, Sawle A, Goodfellow K et al. Flow rate calibration I: a novel approach for performing absolute cell counts.  Cytometry B Clin Cytom. 2003;  55(1) 1-7
  • 103 Montes M, Jaensson E A, Orozco A F, Lewis D E, Corry D B. A general method for bead-enhanced quantitation by flow cytometry.  J Immunol Methods. 2006;  317(1–2) 45-55
  • 104 Nieuwland R, Berckmans R J, McGregor S et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis.  Blood. 2000;  95(3) 930-935
  • 105 Enjeti A K, Lincz L F, Scorgie F E, Seldon M. Circulating microparticles are elevated in carriers of factor V Leiden.  Thromb Res. 2008;  , December 17 (Epub ahead of print)
  • 106 Joop K, Berckmans R J, Nieuwland R et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms.  Thromb Haemost. 2001;  85(5) 810-820

Françoise Dignat-GeorgePharm.D. Ph.D. 

Faculté de Pharmacie, Université de la Méditerranée

F-Marseille, France

Email: francoise.dignat-george@univmed.fr