Semin Thromb Hemost 2010; 36(8): 824-832
DOI: 10.1055/s-0030-1267036
© Thieme Medical Publishers

Microparticle Sizing and Counting Using Light Scattering Methods

Don A. Gabriel1 , 2 , Karen Giordano1
  • 1University of North Carolina School of Medicine, Chapel Hill, North Carolina
  • 2Invitrox, Inc., Durham, North Carolina
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

New light scattering methods offer many advantages to particle size distribution characterization. In addition to ease of operation, speed, and accuracy, the particle size, particle surface characteristics, interaction of the surface with specific ligands, and hydrodynamic volume of the particle are easily obtained. Extensions of these methods also permit the assessment of surface reactions in real time and without reporter group conjugation to the reactant. These methods offer the ability to examine binding constants and kinetics of binding without chemical modification and offer true advantages in product development and clinical diagnostics and therapeutic monitoring.

REFERENCES

  • 1 Zwaal R FA, Schroit A J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells.  Blood. 1997;  89(4) 1121-1132
  • 2 Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings.  Thromb Res. 2008;  123(1) 8-23
  • 3 Piccin A, Murphy W G, Smith O P. Circulating microparticles: pathophysiology and clinical implications.  Blood Rev. 2007;  21(3) 157-171
  • 4 Fox J E, Austin C D, Boyles J K, Steffen P K. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane.  J Cell Biol. 1990;  111(2) 483-493
  • 5 Connor J, Pak C H, Zwaal R FA, Schroit A J. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process.  J Biol Chem. 1992;  267(27) 19412-19417
  • 6 Diaz C, Schroit A J. Role of translocases in the generation of phosphatidylserine asymmetry.  J Membr Biol. 1996;  151(1) 1-9
  • 7 McLaughlin P J, Gooch J T, Mannherz H G, Weeds A G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing.  Nature. 1993;  364(6439) 685-692
  • 8 Beleznay Z, Zachowski A, Devaux P F, Navazo M P, Ott P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: stoichiometry of transport.  Biochemistry. 1993;  32(12) 3146-3152
  • 9 Zwaal R FA, Comfurius P, Bevers E M. Mechanism and function of changes in membrane-phospholipid asymmetry in platelets and erythrocytes.  Biochem Soc Trans. 1993;  21(2) 248-253
  • 10 Kelton J G, Warkentin T E, Hayward C P, Murphy W G, Moore J C. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles.  Blood. 1992;  80(9) 2246-2251
  • 11 George F D. Microparticles in vascular diseases.  Thromb Res. 2008;  122(Suppl 1) S55-S59
  • 12 Chironi G N, Boulanger C M, Simon A, Dignat-George F, Freyssinet J M, Tedgui A. Endothelial microparticles in diseases.  Cell Tissue Res. 2009;  335(1) 143-151
  • 13 Mallat Z, Benamer H, Hugel B et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes.  Circulation. 2000;  101(8) 841-843
  • 14 Morel O, Hugel B, Jesel L et al. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists.  J Thromb Haemost. 2004;  2(7) 1118-1126
  • 15 Matsumoto N, Nomura S, Kamihata H, Kimura Y, Iwasaka T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome.  Thromb Haemost. 2004;  91(1) 146-154
  • 16 Chirinos J A, Heresi G A, Velasquez H et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism.  J Am Coll Cardiol. 2005;  45(9) 1467-1471
  • 17 Simak J, Gelderman M P, Yu H, Wright V, Baird A E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome.  J Thromb Haemost. 2006;  4(6) 1296-1302
  • 18 Ederhy S, Di Angelantonio E, Mallat Z et al. Levels of circulating procoagulant microparticles in nonvalvular atrial fibrillation.  Am J Cardiol. 2007;  100(6) 989-994
  • 19 Boulanger C M, Scoazec A, Ebrahimian T et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction.  Circulation. 2001;  104(22) 2649-2652
  • 20 Rozmyslowicz T, Majka M, Kijowski J et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV.  AIDS. 2003;  17(1) 33-42
  • 21 Kim H K, Song K S, Chung J H, Lee K R, Lee S N. Platelet microparticles induce angiogenesis in vitro.  Br J Haematol. 2004;  124(3) 376-384
  • 22 Biró E, Lok C A, Hack C E et al. Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.  Placenta. 2007;  28(8–9) 928-935
  • 23 Shah M D, Bergeron A L, Dong J F, López J A. Flow cytometric measurement of microparticles: pitfalls and protocol modifications.  Platelets. 2008;  19(5) 365-372
  • 24 Harrison P, Dragovic R, Albanyan A, Lawrie A S, Murphy M, Sargent I. Application of dynamic light scattering to the measurement of microparticles.  J Thromb Haemost. 2009;  7(Suppl 2) , Abstract OC-TU-056
  • 25 Lawrie A S, Albanyan A, Cardigan R A, Mackie I J, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma.  Vox Sang. 2009;  96(3) 206-212
  • 26 Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. Boston, MA; Academic Press 1991
  • 27 Pecora R. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. New York, NY; Plenum Press 1985
  • 28 Schmitz K S. An Introduction to Dynamic Light Scattering by Macromolecules. New York, NY; Academic Press 1990
  • 29 Johnson C S, Gabriel D A. Laser Light Scattering. New York, NY; Dover Publications 1994
  • 30 Jones C R, Johnson Jr C S, Penniston J T. Photon correlation spectroscopy of hemoglobin: diffusion of oxy-HbA and oxy-HbS.  Biopolymers. 1978;  17(6) 1581-1593
  • 31 Maurer-Spurej E, Labrie A, Pittendreigh C et al. Platelet quality measured with dynamic light scattering correlates with transfusion outcome in hematologic malignancies.  Transfusion. 2009;  49(11) 2276-2284
  • 32 Maurer-Spurej E, Brown K, Labrie A, Marziali A, Glatter O. Portable dynamic light scattering instrument and method for the measurement of blood platelet suspensions.  Phys Med Biol. 2006;  51(15) 3747-3758
  • 33 Mauer-Spurej E, Labrie A, Brown K. Routine quality testing of blood platelet transfusions with dynamic light scattering.  Part Part Syst Char. 2008;  25 99-104
  • 34 Li X, Gabriel D A. The physical exchange of factor VIII (FVIII) between von Willebrand factor and activated platelets and the effect of the FVIII B-domain on platelet binding.  Biochemistry. 1997;  36(35) 10760-10767
  • 35 Ware B R. Electrophoretic light scattering.  Adv Colloid Interface Sci. 1974;  4 1
  • 36 Smoluchowski M. Molekular-kinetische Theorie der Opaleszenz von Gasen in kritischen Zustande sowie einiger verwandter Erscheinungen.  Ann Phys. 1908;  25 205-226
  • 37 Melton L G, Li T, Stafford D W, Gabriel D A. Location of the platelet binding site in zymogen coagulation factor IX.  Blood Coagul Fibrinolysis. 2001;  12(4) 237-243
  • 38 Jorgenson J W, Lukacs K D. Free-zone electrophoresis in glass capillaries.  Clin Chem. 1981;  27(9) 1551-1553
  • 39 Xiong G, Aras O, Shet A, Key N S, Arriaga E A. Analysis of individual platelet-derived microparticles, comparing flow cytometry and capillary electrophoresis with laser-induced fluorescence detection.  Analyst (Lond). 2003;  128(6) 581-588
  • 40 Kunicka J E, Fischer G, Murphy J, Zelmanovic D. Improved platelet counting using two-dimensional laser light scatter.  Am J Clin Pathol. 2000;  114(2) 283-289

Don A GabrielM.D. Ph.D. 

Division of Hem/Onc, BMT Program, POB – 3rd Floor

UNC School of Medicine, Chapel Hill, NC 27599

Email: dgabriel@invitrox.com