Semin Thromb Hemost 2010; 36(8): 876-880
DOI: 10.1055/s-0030-1267041
© Thieme Medical Publishers

Microparticle Size and Its Relation to Composition, Functional Activity, and Clinical Significance

Wenche Jy1 , Lawrence L. Horstman1 , Yeon S. Ahn1
  • 1Wallace H Coulter Platelet Laboratory, Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of Miami, Florida
Further Information

Publication History

Publication Date:
03 November 2010 (online)

ABSTRACT

It is emerging that cell-derived microparticles (MP) have multiple functional activities in areas including hemostasis, thrombosis, inflammation, and as messengers in the transport of bioactive lipids, cytokines, complement, and immune signaling. Some of these activities may be performed by distinct phenotypic subsets of MP, even if derived from the same cell type. The focus of this article concerns the size classes of MP, covering methods of MP size measurement, differences in composition between size classes, and relation of size to functional (procoagulant) activity. Some of the issues considered remain to be resolved, such as whether the MP known as exosomes are truly a distinct class of MP, as well as the detailed mechanisms underlying the release of MP of different size ranges.

REFERENCES

  • 1 Wolf P. The nature and significance of platelet products in human plasma.  Br J Haematol. 1967;  13(3) 269-288
  • 2 White J G. Effects of an ionophore, A23187, on the surface morphology of normal erythrocytes.  Am J Pathol. 1974;  77(3) 507-518
  • 3 Allan D, Billah M M, Finean J B, Michell R H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+).  Nature. 1976;  261(5555) 58-60
  • 4 George J N, Thoi L L, McManus L M, Reimann T A. Isolation of human platelet membrane microparticles from plasma and serum.  Blood. 1982;  60(4) 834-840
  • 5 Jy W, Jimenez J J, Horstman L L et al. Microparticles derived from platelets (PMP), endothelia (EMP), and leukocytes (LMP) exhibit distinctive hemostatic and inflammatory activities.  Blood. 2005;  106(11) 1029
  • 6 Polasek J. The appearance of multivesicular structures during platelet activation as observed by scanning electron microscopy.  Thromb Res. 1982;  28(3) 433-437
  • 7 Hughes M, Hayward C PM, Warkentin T E, Horsewood P, Chorneyko K A, Kelton J G. Morphological analysis of microparticle generation in heparin-induced thrombocytopenia.  Blood. 2000;  96(1) 188-194
  • 8 Shukla S D, Berriman J, Coleman R et al. Membrane protein segregation during release of microvesicles from human erythrocytes.  FEBS Lett. 1978;  90(2) 289-292
  • 9 Allan D, Thomas P, Limbrick A R. The isolation and characterization of 60 nm vesicles (‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes.  Biochem J. 1980;  188(3) 881-887
  • 10 Bosman G J, Lasonder E, Luten M et al. The proteome of red cell membranes and vesicles during storage in blood bank conditions.  , [For detailed lists, see supplementary materials online as cited] Transfusion. 2008;  48(5) 827-835
  • 11 Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R. Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin.  Blood. 2002;  99(7) 2569-2577
  • 12 Jy W, Horstman L L, Wang F, Duncan R C, Ahn Y S. Platelet factor 3 in plasma fractions: its relation to microparticle size and thromboses.  Thromb Res. 1995;  80(6) 471-482
  • 13 Lawrie A S, Harrison P, Cardigan R A, Mackie I J. The characterization and impact of microparticles on haemostasis within fresh-frozen plasma.  Vox Sang. 2008;  95(3) 197-204
  • 14 Lawrie A S, Albanyan A, Cardigan R A, Mackie I J, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma.  Vox Sang. 2009;  96(3) 206-212
  • 15 Abbott A J, Nelsestuen G L. Association of a protein with membrane vesicles at the collisional limit: studies with blood coagulation factor Va light chain also suggest major differences between small and large unilamellar vesicles.  Biochemistry. 1987;  26(24) 7994-8003
  • 16 Heijnen H FG, Schiel A E, Fijnheer R, Geuze H J, Sixma J J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules.  Blood. 1999;  94(11) 3791-3799
  • 17 Denzer K, Kleijmeer M J, Heijnen H FG, Stoorvogel W, Geuze H J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device [review].  J Cell Sci. 2000;  113(Pt 19) 3365-3374
  • 18 Mathivanan S, Lim J W, Tauro B J, Ji H, Moritz R L, Simpson R J. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature.  Mol Cell Proteomics. 2010;  9(2) 197-208
  • 19 Mathivanan S, Simpson R J. ExoCarta: A compendium of exosomal proteins and RNA.  Proteomics. 2009;  9(21) 4997-5000
  • 20 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee J J, Lötvall J O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.  Nat Cell Biol. 2007;  9(6) 654-659
  • 21 McLellan A D. Exosome release by primary B cells.  Crit Rev Immunol. 2009;  29(3) 203-217
  • 22 Li X B, Zhang Z R, Schluesener H J, Xu S Q. Role of exosomes in immune regulation.  J Cell Mol Med. 2006;  10(2) 364-375
  • 23 Schorey J S, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology.  Traffic. 2008;  9(6) 871-881

Wenche JyPh.D. 

1600 NW 10th Avenue

R-36A, Miami, FL 33176

Email: wjy@med.miami.edu