Semin Thromb Hemost 2010; 36(8): 907-916
DOI: 10.1055/s-0030-1267044
© Thieme Medical Publishers

Microparticles: Key Protagonists in Cardiovascular Disorders

Nicolas Amabile1 , 3 [*] , Pierre-Emmanuel Rautou1 [*] , Alain Tedgui1 , 2 , Chantal M. Boulanger1 , 2
  • 11 INSERM, U970, Paris Cardiovascular Research Center – PARCC, Paris, France
  • 2Université Paris Descartes, UMR-S970, Paris, France
  • 3Cardiology Department, Marie Lannelongue Center, Le Plessis Robinson, France
Further Information

Publication History

Publication Date:
10 November 2010 (online)

ABSTRACT

Microparticles (MP) are shed membrane vesicles released by various cell types following apoptosis or activation. MP circulate in human plasma and also accumulate in atherosclerotic lesions. A growing body of evidence has highlighted their involvement in inflammation, angiogenesis, coagulation, and the regulation of vascular tone. MP may therefore contribute to the initiation and development of atherosclerosis and its complications. Plasma MP originate from platelets, leukocytes, erythrocytes, and endothelial cells, and their levels increase in patients with cardiovascular diseases; specific cardiovascular medications also affect plasma MP levels. Most recent data suggest a potential prognostic role of circulating MP for identification of subjects prone to develop cardiovascular complications.

REFERENCES

  • 1 Wolf P. The nature and significance of platelet products in human plasma.  Br J Haematol. 1967;  13(3) 269-288
  • 2 Boulanger C M, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease.  Hypertension. 2006;  48(2) 180-186
  • 3 Morel O, Toti F, Hugel B et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2594-2604
  • 4 Huber J, Vales A, Mitulovic G et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions.  Arterioscler Thromb Vasc Biol. 2002;  22(1) 101-107
  • 5 Kolowos W, Gaipl U S, Sheriff A et al. Microparticles shed from different antigen-presenting cells display an individual pattern of surface molecules and a distinct potential of allogeneic T-cell activation.  Scand J Immunol. 2005;  61(3) 226-233
  • 6 Miguet L, Pacaud K, Felden C et al. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization.  Proteomics. 2006;  6(1) 153-171
  • 7 Bernimoulin M, Waters E K, Foy M et al. Differential stimulation of monocytic cells results in distinct populations of microparticles.  J Thromb Haemost. 2009;  7(6) 1019-1028
  • 8 Barry O P, Praticò D, Savani R C, FitzGerald G A. Modulation of monocyte-endothelial cell interactions by platelet microparticles.  J Clin Invest. 1998;  102(1) 136-144
  • 9 Mesri M, Altieri D C. Endothelial cell activation by leukocyte microparticles.  J Immunol. 1998;  161(8) 4382-4387
  • 10 Mesri M, Altieri D C. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway.  J Biol Chem. 1999;  274(33) 23111-23118
  • 11 Nomura S, Tandon N N, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells.  Atherosclerosis. 2001;  158(2) 277-287
  • 12 Curtis A M, Wilkinson P F, Gui M, Gales T L, Hu E, Edelberg J M. p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles.  J Thromb Haemost. 2009;  7(4) 701-709
  • 13 Soleti R, Benameur T, Porro C, Panaro M A, Andriantsitohaina R, Martínez M C. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors.  Carcinogenesis. 2009;  30(4) 580-588
  • 14 Mause S F, von Hundelshausen P, Zernecke A, Koenen R R, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium.  Arterioscler Thromb Vasc Biol. 2005;  25(7) 1512-1518
  • 15 Barry O P, Kazanietz M G, Praticò D, FitzGerald G A. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway.  J Biol Chem. 1999;  274(11) 7545-7556
  • 16 Huo Y, Schober A, Forlow S B et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.  Nat Med. 2003;  9(1) 61-67
  • 17 Gasser O, Schifferli J A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis.  Blood. 2004;  104(8) 2543-2548
  • 18 Dalli J, Norling L V, Renshaw D, Cooper D, Leung K Y, Perretti M. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles.  Blood. 2008;  112(6) 2512-2519
  • 19 Leroyer A S, Isobe H, Lesèche G et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques.  J Am Coll Cardiol. 2007;  49(7) 772-777
  • 20 Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet J M, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity.  Circulation. 1999;  99(3) 348-353
  • 21 Leroyer A S, Rautou P E, Silvestre J S et al. CD40 ligand + microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization.  J Am Coll Cardiol. 2008;  52(16) 1302-1311
  • 22 Mayr M, Grainger D, Mayr U et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques.  Circ Cardiovasc Genet. 2009;  2(4) 379-388
  • 23 Angelot F, Seillès E, Biichlé S et al. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.  Haematologica. 2009;  94(11) 1502-1512
  • 24 Scanu A, Molnarfi N, Brandt K J, Gruaz L, Dayer J M, Burger D. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins.  J Leukoc Biol. 2008;  83(4) 921-927
  • 25 Canault M, Leroyer A S, Peiretti F et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1.  Am J Pathol. 2007;  171(5) 1713-1723
  • 26 Kim H K, Song K S, Chung J H, Lee K R, Lee S N. Platelet microparticles induce angiogenesis in vitro.  Br J Haematol. 2004;  124(3) 376-384
  • 27 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization.  Cardiovasc Res. 2005;  67(1) 30-38
  • 28 Mezentsev A, Merks R M, O'Riordan E et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress.  Am J Physiol Heart Circ Physiol. 2005;  289(3) H1106-H1114
  • 29 Yang C, Mwaikambo B R, Zhu T et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways.  Am J Physiol Regul Integr Comp Physiol. 2008;  294(2) R467-R476
  • 30 Leroyer A S, Ebrahimian T G, Cochain C et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis.  Circulation. 2009;  119(21) 2808-2817
  • 31 Deregibus M C, Cantaluppi V, Calogero R et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.  Blood. 2007;  110(7) 2440-2448
  • 32 Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells.  Am J Pathol. 2002;  160(2) 673-680
  • 33 Lacroix R, Sabatier F, Mialhe A et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro.  Blood. 2007;  110(7) 2432-2439
  • 34 Biró E, Sturk-Maquelin K N, Vogel G M et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner.  J Thromb Haemost. 2003;  1(12) 2561-2568
  • 35 Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie B C, Furie B. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation.  Blood. 2004;  104(10) 3190-3197
  • 36 Nieuwland R, Berckmans R J, Rotteveel-Eijkman R C et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant.  Circulation. 1997;  96(10) 3534-3541
  • 37 Westerberg M, Gäbel J, Bengtsson A, Sellgren J, Eidem O, Jeppsson A. Hemodynamic effects of cardiotomy suction blood.  J Thorac Cardiovasc Surg. 2006;  131(6) 1352-1357
  • 38 Antoniak S, Boltzen U, Eisenreich A et al. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro.  J Thromb Haemost. 2009;  7(5) 871-878
  • 39 Boulanger C M, Scoazec A, Ebrahimian T et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction.  Circulation. 2001;  104(22) 2649-2652
  • 40 Vanwijk M J, Svedas E, Boer K, Nieuwland R, Vanbavel E, Kublickiene K R. Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women.  Am J Obstet Gynecol. 2002;  187(6) 1686-1693
  • 41 Amabile N, Guérin A P, Leroyer A et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure.  J Am Soc Nephrol. 2005;  16(11) 3381-3388
  • 42 Agouni A, Lagrue-Lak-Hal A H, Ducluzeau P H et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome.  Am J Pathol. 2008;  173(4) 1210-1219
  • 43 Fontaine D, Pradier O, Hacquebard M et al. Oxidative stress produced by circulating microparticles in on-pump but not in off-pump coronary surgery.  Acta Cardiol. 2009;  64(6) 715-722
  • 44 Essayagh S, Brisset A C, Terrisse A D et al. Microparticles from apoptotic vascular smooth muscle cells induce endothelial dysfunction, a phenomenon prevented by beta3-integrin antagonists.  Thromb Haemost. 2005;  94(4) 853-858
  • 45 Brodsky S V, Zhang F, Nasjletti A, Goligorsky M S. Endothelium-derived microparticles impair endothelial function in vitro.  Am J Physiol Heart Circ Physiol. 2004;  286(5) H1910-H1915
  • 46 Martin S, Tesse A, Hugel B et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression.  Circulation. 2004;  109(13) 1653-1672
  • 47 Fontaine D, Pradier O, Hacquebard M et al. Oxidative stress produced by circulating microparticles in on-pump but not in off-pump coronary surgery.  Acta Cardiol. 2009;  64(6) 715-722
  • 48 Agouni A, Mostefai H A, Porro C et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release.  FASEB J. 2007;  21(11) 2735-2741
  • 49 Tesse A, Martínez M C, Hugel B et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity.  Arterioscler Thromb Vasc Biol. 2005;  25(12) 2522-2527
  • 50 Mostefai H A, Meziani F, Mastronardi M L et al. Circulating microparticles from patients with septic shock exert protective role in vascular function.  Am J Respir Crit Care Med. 2008;  178(11) 1148-1155
  • 51 Pfister S L. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery.  Hypertension. 2004;  43(2) 428-433
  • 52 Dasgupta S K, Abdel-Monem H, Niravath P et al. Lactadherin and clearance of platelet-derived microvesicles.  Blood. 2009;  113(6) 1332-1339
  • 53 Willekens F L, Werre J M, Kruijt J K et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors.  Blood. 2005;  105(5) 2141-2145
  • 54 Ait-Oufella H, Kinugawa K, Zoll J et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice.  Circulation. 2007;  115(16) 2168-2177
  • 55 Chironi G, Simon A, Hugel B et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects.  Arterioscler Thromb Vasc Biol. 2006;  26(12) 2775-2780
  • 56 Heiss C, Amabile N, Lee A C et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production.  J Am Coll Cardiol. 2008;  51(18) 1760-1771
  • 57 Kagawa H, Nomura S, Nagahama M, Ozaki Y, Fukuhara S. Effect of ticlopidine on platelet-derived microparticles in patients with connective tissue diseases.  Haemostasis. 1999;  29(5) 255-261
  • 58 Shouzu A, Nomura S, Omoto S, Hayakawa T, Nishikawa M, Iwasaka T. Effect of ticlopidine on monocyte-derived microparticles and activated platelet markers in diabetes mellitus.  Clin Appl Thromb Hemost. 2004;  10(2) 167-173
  • 59 Goto S, Tamura N, Li M et al. Different effects of various anti-GPIIb-IIIa agents on shear-induced platelet activation and expression of procoagulant activity.  J Thromb Haemost. 2003;  1(9) 2022-2030
  • 60 Morel O, Hugel B, Jesel L et al. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists.  J Thromb Haemost. 2004;  2(7) 1118-1126
  • 61 Rössig L, Hoffmann J, Hugel B et al. Vitamin C inhibits endothelial cell apoptosis in congestive heart failure.  Circulation. 2001;  104(18) 2182-2187
  • 62 Morel O, Jesel L, Hugel B et al. Protective effects of vitamin C on endothelium damage and platelet activation during myocardial infarction in patients with sustained generation of circulating microparticles.  J Thromb Haemost. 2003;  1(1) 171-177
  • 63 Sapet C, Simoncini S, Loriod B et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2.  Blood. 2006;  108(6) 1868-1876
  • 64 Tramontano A F, O'Leary J, Black A D, Muniyappa R, Cutaia M V, El-Sherif N. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway.  Biochem Biophys Res Commun. 2004;  320(1) 34-38
  • 65 Diamant M, Tushuizen M E, Abid-Hussein M N et al. Simvastatin-induced endothelial cell detachment and microparticle release are prenylation dependent.  Thromb Haemost. 2008;  100(3) 489-497
  • 66 Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus.  Clin Appl Thromb Hemost. 2004;  10(2) 133-141
  • 67 Nomura S, Inami N, Shouzu A et al. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients.  Platelets. 2009;  20(1) 16-22
  • 68 Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Long-term treatment with nifedipine modulates procoagulant marker and C-C chemokine in hypertensive patients with type 2 diabetes mellitus.  Thromb Res. 2005;  115(4) 277-285
  • 69 Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Benidipine improves oxidized LDL-dependent monocyte and endothelial dysfunction in hypertensive patients with type 2 diabetes mellitus.  J Hum Hypertens. 2005;  19(7) 551-557
  • 70 Boulanger C M, Amabile N, Guérin A P et al. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease.  Hypertension. 2007;  49(4) 902-908
  • 71 Gerrits A J, Koekman C A, Yildirim C, Nieuwland R, Akkerman J W. Insulin inhibits tissue factor expression in monocytes.  J Thromb Haemost. 2009;  7(1) 198-205
  • 72 Shimazu T, Inami N, Satoh D et al. Effect of acarbose on platelet-derived microparticles, soluble selectins, and adiponectin in diabetic patients.  J Thromb Thrombolysis. 2009;  28(4) 429-435
  • 73 Simak J, Gelderman M P, Yu H, Wright V, Baird A E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome.  J Thromb Haemost. 2006;  4(6) 1296-1302
  • 74 Amabile N, Heiss C, Chang V et al. Increased CD62e( + ) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients.  J Heart Lung Transplant. 2009;  28(10) 1081-1086
  • 75 Nozaki T, Sugiyama S, Koga H et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease.  J Am Coll Cardiol. 2009;  54(7) 601-608
  • 76 Amabile N, Boulanger C M, Guérin A P, Tedgui A, London G M. Circulating endothelial microparticles: a novel biomarker for prediction of subsequent death and cardiovascular events in end-stage renal disease.  Circulation. 2009;  120 S1010
  • 77 Diamant M, Nieuwland R, Pablo R F, Sturk A, Smit J W, Radder J K. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus.  Circulation. 2002;  106(19) 2442-2447
  • 78 Sabatier F, Darmon P, Hugel B et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles.  Diabetes. 2002;  51(9) 2840-2845
  • 79 Preston R A, Jy W, Jimenez J J et al. Effects of severe hypertension on endothelial and platelet microparticles.  Hypertension. 2003;  41(2) 211-217
  • 80 Arteaga R B, Chirinos J A, Soriano A O et al. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome.  Am J Cardiol. 2006;  98(1) 70-74
  • 81 Ferreira A C, Peter A A, Mendez A J et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles.  Circulation. 2004;  110(23) 3599-3603
  • 82 Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31 + /annexin V + apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease.  Arterioscler Thromb Vasc Biol. 2006;  26(1) 112-116
  • 83 Koga H, Sugiyama S, Kugiyama K et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease.  J Am Coll Cardiol. 2005;  45(10) 1622-1630
  • 84 Esposito K, Ciotola M, Schisano B et al. Endothelial microparticles correlate with endothelial dysfunction in obese women.  J Clin Endocrinol Metab. 2006;  91(9) 3676-3679
  • 85 Jayachandran M, Litwiller R D, Owen W G et al. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women.  Am J Physiol Heart Circ Physiol. 2008;  295(3) H931-H938
  • 86 Mallat Z, Benamer H, Hugel B et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes.  Circulation. 2000;  101(8) 841-843
  • 87 Bernal-Mizrachi L, Jy W, Jimenez J J et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes.  Am Heart J. 2003;  145(6) 962-970
  • 88 Jung K-H, Chu K, Lee S-T et al. Circulating endothelial microparticles as a marker of cerebrovascular disease.  Ann Neurol. 2009;  66(2) 191-199
  • 89 Tan K T, Tayebjee M H, Lynd C, Blann A D, Lip G Y. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers.  Ann Med. 2005;  37(1) 61-66
  • 90 Nomura S, Imamura A, Okuno M et al. Platelet-derived microparticles in patients with arteriosclerosis obliterans: enhancement of high shear-induced microparticle generation by cytokines.  Thromb Res. 2000;  98(4) 257-268
  • 91 Garcia S, Chirinos J, Jimenez J et al. Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: switch from cell activation to apoptosis.  J Heart Lung Transplant. 2005;  24(12) 2184-2189
  • 92 Horigome H, Hiramatsu Y, Shigeta O, Nagasawa T, Matsui A. Overproduction of platelet microparticles in cyanotic congenital heart disease with polycythemia.  J Am Coll Cardiol. 2002;  39(6) 1072-1077
  • 93 Morel O, Ohlmann P, Epailly E et al. Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection.  J Heart Lung Transplant. 2008;  27(1) 38-45
  • 94 Amabile N, Heiss C, Real W M et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension.  Am J Respir Crit Care Med. 2008;  177(11) 1268-1275
  • 95 Bakouboula B, Morel O, Faure A et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension.  Am J Respir Crit Care Med. 2008;  177(5) 536-543
  • 96 Diehl P, Nagy F, Sossong V et al. Increased levels of circulating microparticles in patients with severe aortic valve stenosis.  Thromb Haemost. 2008;  99(4) 711-719
  • 97 Ederhy S, Di Angelantonio E, Mallat Z et al. Levels of circulating procoagulant microparticles in nonvalvular atrial fibrillation.  Am J Cardiol. 2007;  100(6) 989-994
  • 98 Chirinos J A, Heresi G A, Velasquez H et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism.  J Am Coll Cardiol. 2005;  45(9) 1467-1471
  • 99 Brogan P A, Shah V, Brachet C et al. Endothelial and platelet microparticles in vasculitis of the young.  Arthritis Rheum. 2004;  50(3) 927-936
  • 100 Erdbruegger U, Grossheim M, Hertel B et al. Diagnostic role of endothelial microparticles in vasculitis.  Rheumatology (Oxford). 2008;  47(12) 1820-1825
  • 101 Sellam J, Proulle V, Jüngel A et al. Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity.  Arthritis Res Ther. 2009;  11(5) R156
  • 102 Combes V, Simon A C, Grau G E et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.  J Clin Invest. 1999;  104(1) 93-102
  • 103 Dignat-George F, Camoin-Jau L, Sabatier F et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome.  Thromb Haemost. 2004;  91(4) 667-673
  • 104 VanWijk M J, Nieuwland R, Boer K, van der Post J A, VanBavel E, Sturk A. Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction?.  Am J Obstet Gynecol. 2002;  187(2) 450-456
  • 105 González-Quintero V H, Jiménez J J, Jy W et al. Elevated plasma endothelial microparticles in preeclampsia.  Am J Obstet Gynecol. 2003;  189(2) 589-593

1 Both authors contributed equally to the work.

Chantal M BoulangerPh.D. 

Paris – Cardiovascular Research Center at HEGP

1 INSERM - U970, 56, rue Leblanc, 75015 Paris, France

Email: chantal.boulanger@inserm.fr