Abstract
The fatty acid transport protein 5 (FATP5) is exclusively expressed in the liver and
is involved in hepatic lipid and bile metabolism. We investigated whether a variation
in the FATP5 promoter (rs56225452) is associated with hepatic steatosis and further
features of the metabolic syndrome. A total of 716 male subjects from the Metabolic
Intervention Cohort Kiel (MICK) and 103 male subjects with histologically proved nonalcoholic
fatty liver disease (NAFLD) were genotyped for this FATP5 polymorphism rs56225452
and phenotyped for features of the metabolic syndrome. In the MICK cohort, ALT activities,
postprandial insulin, and triglyceride concentrations were higher in subjects carrying
the rare A-allele compared to GG homozygotes. Accordingly, the insulin sensitivity
index determined after a mixed meal and standardized glucose load was lower in A-allele
carriers. NAFLD cases carrying allele A were presented with also higher ALT activities.
In NAFLD subjects, the association of BMI with the degree of steatosis and glucose
concentration differed across FATP5 promoter polymorphism. The FATP5 promoter polymorphism
rs56225452 is associated with higher ALT activity, insulin resistance, and dyslipidemia
in the general population. The impact of the BMI on the severity of steatosis in NAFLD
cases seems to depend on the FATP5 polmorphism.
Key words
FATP5 - postprandial insulin resistance - hepatic steatosis - genetic variation
References
1
Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S.
Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos
nutrition and liver study.
Hepatology.
2005;
42
44-52
2
Kotronen A, Westerbacka J, Bergholm R, Pietilainen KH, Yki-Jarvinen H.
Liver Fat in the Metabolic Syndrome.
J Clin Endocrinol Metab.
2007;
92
3490-3497
3
Seppala-Lindroos A, Vehkavaara S, Hakkinen A-M, Goto T, Westerbacka J, Sovijarvi A,
Halavaara J, Yki-Jarvinen H.
Fat Accumulation in the Liver Is Associated with Defects in Insulin Suppression of
Glucose Production and Serum Free Fatty Acids Independent of Obesity in Normal Men.
J Clin Endocrinol Metab.
2002;
87
3023-3028
4
Gimeno RE.
Fatty acid transport proteins.
Curr Opin Lipidol.
2007;
18
271-276
5
Hirsch D, Stahl A, Lodish HF.
A family of fatty acid transporters conserved from mycobacterium to man.
Proc Natl Acad Sci USA.
1998;
95
8625-8629
6
Steinberg SJ, Mihalik SJ, Kim DG, Cuebas DA, Watkins PA.
The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate:
CoA ligase.
J Biol Chem.
2000;
275
15605-15608
7
Hubbard B, Doege H, Punreddy S, Wu H, Huang X, Kaushik VK, Mozell RL, Byrnes JJ, Stricker-Krongrad A,
Chou CJ, Tartaglia LA, Lodish HF, Stahl A, Gimeno RE.
Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation
and are protected from obesity.
Gastroenterology.
2006;
130
1259-1269
8
Doege H, Grimm D, Falcon A, Tsang B, Storm TA, Xu H, Ortegon AM, Kazantzis M, Kay MA,
Stahl A.
Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced
non-alcoholic fatty liver disease and improves hyperglycemia.
J Biol Chem.
2008;
283
22186-22192
9
Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE,
Stahl A.
Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations
in hepatic lipid homeostasis.
Gastroenterology.
2006;
130
1245-1258
10
Fisher E, Nitz I, Lindner I, Rubin D, Boeing H, Mohlig M, Hampe J, Schreiber S, Schrezenmeir J,
Doring F.
Candidate gene association study of type 2 diabetes in a nested case-control study
of the EPIC-Potsdam cohort – role of fat assimilation.Mol nutr Food Res 2007;51:185–191.
11
Rubin D, Helwig U, Nothnagel M, Folsch U, Schreiber S, Schrezenmeir J.
Association of postprandial and fasting triglycerides with traits of the metabolic
syndrome in the Metabolic Intervention Cohort Kiel (MICK).
Eur J Endocrinol.
2010;
162
719-727
12
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting
plasma glucose and insulin concentrations in man.
Diabetologia.
1985;
28
412-419
13
Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ.
A Model-Based Method for Assessing Insulin Sensitivity From the Oral Glucose Tolerance
Test.
Diabetes Care.
2001;
24
539-548
14
Fargion S, Mattioli M, Fracanzani AL, Sampietro M, Tavazzi D, Fociani P, Taioli E,
Valenti L, Fiorelli G.
Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients
at risk for nonalcoholic steatohepatitis.
Am J Gastroenterol.
2001;
96
2448-2455
15
Caballeria L, Pera G, Auladell MA, Toran P, Munoz L, Miranda D, Aluma A, Casas JD,
Sanchez C, Gil D, Auba J, Tibau A, Canut S, Bernad J, Aizpurua MM.
Prevalence and factors associated with the presence of nonalcoholic fatty liver disease
in an adult population in Spain.
Eur J Gastroenterol Hepatol.
2010;
22
24-32
16
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD,
Liu YC, Torbenson MS, Unalp-Arida A.
Design and validation of a histological scoring system for nonalcoholic fatty liver
disease.
Hepatology.
2005;
41
1313-1321
17
Hampe J, Shaw SH, Saiz R, Leysens N, Lantermann A, Mascheretti S, Lynch NJ, MacPherson AJ,
Bridger S, van Deventer S, Stokkers P, Morin P, Mirza MM, Forbes A, Lennard-Jones JE,
Mathew CG, Curran ME, Schreiber S.
Linkage of inflammatory bowel disease to human chromosome 6p.
Am J Hum Genet.
1999;
65
1647-1655
18
Wingender E, Dietze P, Karas H, Knuppel R.
TRANSFAC: a database on transcription factors and their DNA binding sites.
Nucl Acids Res.
1996;
24
238-241
19
Merika M, Orkin SH.
DNA-binding specificity of GATA family transcription factors.
Mol Cell Biol.
1993;
13
3999-4010
20
Barrett JC, Fry B, Maller J, Daly MJ.
Haploview: analysis and visualization of LD and haplotype maps.
Bioinformatics.
2005;
21
263-265
21
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K.
dbSNP: the NCBI database of genetic variation.
Nucl Acids Res.
2001;
29
308-311
22
Goto T, Onuma T, Takebe K, Kral JG.
The influence of fatty liver on insulin clearance and insulin resistance in non-diabetic
Japanese subjects.
Int J Obes Relat Metab Disord.
1995;
19
841-845
23
Sasaki S, Masaki N, Yashiro H, Kudo M, Kimura K, Takebe K.
Degradation of insulin in perfused liver and skeletal muscle and insulin secretion
in perfused pancreas of liver injury rat.
Horm Metab Res.
1981;
13
561-564
24
Hwang JH, Stein DT, Barzilai N, Cui MH, Tonelli J, Kishore P, Hawkins M.
Increased intrahepatic triglyceride is associated with peripheral insulin resistance:
in vivo MR imaging and spectroscopy studies.
Am J Physiol Endocrinol Metab.
2007;
293
E1663-E1669
25
Schwarz J-M, Linfoot P, Dare D, Aghajanian K.
Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming
high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets.
Am J Clin Nutr.
2003;
77
43-50
26
Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S,
Häkkinen A, Olofsson SO, Yki-Järvinen H.
Overproduction of large VLDL particles is driven by increased liver fat content in
man.
Diabetologia.
2006;
49
755-765
27
Pedrini MT, Kranebitter M, Niederwanger A, Kaser S, Engl J, Debbage P, Huber LA, Patsch JR.
Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling
in L6 skeletal muscle cells independently of non-esterified fatty acid levels.
Diabetologia.
2005;
48
756-766
28
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ.
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with
nonalcoholic fatty liver disease.
J Clin Invest.
2005;
115
1343-1351
29
Rijkelijkhuizen JM, Doesburg T, Girman CJ, Mari A, Rhodes T, Gastaldelli A, Nijpels G,
Dekker JM.
Hepatic fat is not associated with beta-cell function or postprandial free fatty acid
response.
Metabolism.
2009;
58
196-203
30
Westerbacka J, Corner A, Tiikkainen M, Tamminen M, Vehkavaara S, Häkkinen AM, Fredriksson J,
Yki-Järvinen H.
Women and men have similar amounts of liver and intra-abdominal fat, despite more
subcutaneous fat in women: implications for sex differences in markers of cardiovascular
risk.
Diabetologia.
2004;
47
1360-1369
Correspondence
A. Auinger
Max Rubner-Institut
Federal Research Institute of
Nutrition and Food
Department of Physiology and
Biochemistry of Nutrition
Hermann-Weigmann-Straße 1
24103 Kiel
Germany
Telefon: +49/431/609 2506
Fax: +49/431/609 2472
eMail: Annegret.Auinger@mri.bund.de