ABSTRACT
Hepatic steatosis is now understood to play an important role in the development of advanced liver disease. Alcoholic and nonalcoholic fatty liver each begin with the accumulation of lipids in the liver. Lipid accumulation in the liver can occur through maladaptations of fatty acid uptake (either through dietary sources or from fat tissue), fatty acid synthesis, fatty acid oxidation, or export of lipids from the liver. Alterations in mechanisms of fatty acid uptake through both dietary uptake and lipolysis in adipose tissue can contribute to the pathogenesis of both disorders, as can effects on fatty acid transporters. Effects on lipid synthesis in alcoholic and nonalcoholic fatty liver involve the endoplasmic reticulum (ER) stress response, homocysteine metabolism pathway, and different transcription factors regulating genes in the lipid synthesis pathway. Fatty acid oxidation, through effects on AMP-activated protein kinase (AMPK), adiponectin, peroxisome proliferator-activated receptors (PPARs), and mitochondrial function is predominantly altered in alcoholic liver disease, although studies suggest that activation of this pathway may improve nonalcoholic fatty liver disease. Finally, changes in fatty acid export, through effects on apolipoprotein B and microsomal transport protein are seen in both diseases. Thus, the similarities and differences in the mechanism of fat accumulation in the liver in nonalcoholic and alcoholic liver disease are explored in detail.
KEYWORDS
Lipid metabolism - hepatic steatosis - alcoholic fatty liver disease - nonalcoholic fatty liver disease - ER stress - sterol response element binding protein - peroxisome proliferator activated receptor - AMP-activated protein kinase
REFERENCES
1
Donnelly K L, Smith C I, Schwarzenberg S J, Jessurun J, Boldt M D, Parks E J.
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
J Clin Invest.
2005;
115(5)
1343-1351
2
Westerbacka J, Lammi K, Häkkinen A M et al..
Dietary fat content modifies liver fat in overweight nondiabetic subjects.
J Clin Endocrinol Metab.
2005;
90(5)
2804-2809
3
Towle H C, Kaytor E N, Shih H M.
Regulation of the expression of lipogenic enzyme genes by carbohydrate.
Annu Rev Nutr.
1997;
17
405-433
4
Lê K A, Bortolotti M.
Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease.
Curr Opin Clin Nutr Metab Care.
2008;
11(4)
477-482
5
Lieber C S, DeCarli L M.
Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver.
Am J Clin Nutr.
1970;
23(4)
474-478
6
You M, Considine R V, Leone T C, Kelly D P, Crabb D W.
Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice.
Hepatology.
2005;
42(3)
568-577
7
Mezey E.
Dietary fat and alcoholic liver disease.
Hepatology.
1998;
28(4)
901-905
8
Nanji A A.
Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease.
Alcohol.
2004;
34(1)
21-25
9
Ronis M J, Korourian S, Zipperman M, Hakkak R, Badger T M.
Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition.
J Nutr.
2004;
134(4)
904-912
10
Pessayre D, Fromenty B.
NASH: a mitochondrial disease.
J Hepatol.
2005;
42(6)
928-940
11
Capeau J.
Insulin resistance and steatosis in humans.
Diabetes Metab.
2008;
34(6 Pt 2)
649-657
12
de Almeida I T, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo M E.
Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.
Clin Nutr.
2002;
21(3)
219-223
13
Chalasani N, Deeg M A, Persohn S, Crabb D W.
Metabolic and anthropometric evaluation of insulin resistance in nondiabetic patients with nonalcoholic steatohepatitis.
Am J Gastroenterol.
2003;
98(8)
1849-1855
14
Navder K P, Baraona E, Lieber C S.
Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.
J Nutr.
1997;
127(9)
1800-1806
15
Lavoie J M, Gauthier M S.
Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise.
Cell Mol Life Sci.
2006;
63(12)
1393-1409
16
Zhou J, Febbraio M, Wada T et al..
Hepatic fatty acid transporter CD36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis.
Gastroenterology.
2008;
134(2)
556-567
17
Greco D, Kotronen A, Westerbacka J et al..
Gene expression in human NAFLD.
Am J Physiol Gastrointest Liver Physiol.
2008;
294(5)
G1281-G1287
18
Doege H, Baillie R A, Ortegon A M et al..
Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis.
Gastroenterology.
2006;
130(4)
1245-1258
19
Newberry E P, Xie Y, Kennedy S et al..
Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene.
J Biol Chem.
2003;
278(51)
51664-51672
20
Newberry E P, Xie Y, Kennedy S M, Luo J, Davidson N O.
Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice.
Hepatology.
2006;
44(5)
1191-1205
21
Xu A, Wang Y, Keshaw H, Xu L Y, Lam K S, Cooper G J.
The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.
J Clin Invest.
2003;
112(1)
91-100
22
Sozio M, Crabb D W.
Alcohol and lipid metabolism.
Am J Physiol Endocrinol Metab.
2008;
295(1)
E10-E16
23
Ji C, Kaplowitz N.
Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.
Gastroenterology.
2003;
124(5)
1488-1499
24
Coll O, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa J C.
Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.
Hepatology.
2003;
38(3)
692-702
25
Ji C.
Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury.
J Gastroenterol Hepatol.
2008;
23(Suppl 1)
S16-S24
26
Chalasani N, Deeg M A, Crabb D W.
Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis.
Am J Gastroenterol.
2004;
99(8)
1497-1502
27
Wang D, Wei Y, Pagliassotti M J.
Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis.
Endocrinology.
2006;
147(2)
943-951
28
Borradaile N M, Han X, Harp J D, Gale S E, Ory D S, Schaffer J E.
Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.
J Lipid Res.
2006;
47(12)
2726-2737
29
Du K, Herzig S, Kulkarni R N, Montminy M.
TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.
Science.
2003;
300(5625)
1574-1577
30
Kaplowitz N, Than T A, Shinohara M, Ji C.
Endoplasmic reticulum stress and liver injury.
Semin Liver Dis.
2007;
27(4)
367-377
31
Ozcan U, Cao Q, Yilmaz E et al..
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.
Science.
2004;
306(5695)
457-461
32
Ozcan U, Yilmaz E, Ozcan L et al..
Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes.
Science.
2006;
313(5790)
1137-1140
33
Nakatani Y, Kaneto H, Kawamori D et al..
Involvement of endoplasmic reticulum stress in insulin resistance and diabetes.
J Biol Chem.
2005;
280(1)
847-851
34
Barak A J, Beckenhauer H C, Junnila M, Tuma D J.
Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.
Alcohol Clin Exp Res.
1993;
17(3)
552-555
35
Barak A J, Beckenhauer H C, Tuma D J, Badakhsh S.
Effects of prolonged ethanol feeding on methionine metabolism in rat liver.
Biochem Cell Biol.
1987;
65(3)
230-233
36
Halsted C H, Villanueva J, Chandler C J et al..
Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation.
Hepatology.
1996;
23(3)
497-505
37
Trimble K C, Molloy A M, Scott J M, Weir D G.
The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage.
Hepatology.
1993;
18(4)
984-989
38
Villanueva J A, Halsted C H.
Hepatic transmethylation reactions in micropigs with alcoholic liver disease.
Hepatology.
2004;
39(5)
1303-1310
39
Ji C, Deng Q, Kaplowitz N.
Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury.
Hepatology.
2004;
40(2)
442-451
40
Esfandiari F, Villanueva J A, Wong D H, French S W, Halsted C H.
Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs.
Am J Physiol Gastrointest Liver Physiol.
2005;
289(1)
G54-G63
41
Esfandiari F, You M, Villanueva J A, Wong D H, French S W, Halsted C H.
S-adenosylmethionine attenuates hepatic lipid synthesis in micropigs fed ethanol with a folate-deficient diet.
Alcohol Clin Exp Res.
2007;
31(7)
1231-1239
42
Song Z, Deaciuc I, Zhou Z et al..
Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis.
Am J Physiol Gastrointest Liver Physiol.
2007;
293(4)
G894-G902
43
Hirsch S, Poniachick J, Avendaño M et al..
Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver.
Nutrition.
2005;
21(2)
137-141
44
Gulsen M, Yesilova Z, Bagci S et al..
Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease.
J Gastroenterol Hepatol.
2005;
20(9)
1448-1455
45
Foufelle F, Ferré P.
New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c.
Biochem J.
2002;
366(Pt 2)
377-391
46
Postic C, Girard J.
The role of the lipogenic pathway in the development of hepatic steatosis.
Diabetes Metab.
2008;
34(6 Pt 2)
643-648
47
Shimano H, Horton J D, Hammer R E, Shimomura I, Brown M S, Goldstein J L.
Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a.
J Clin Invest.
1996;
98(7)
1575-1584
48
Endo M, Masaki T, Seike M, Yoshimatsu H.
TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c).
Exp Biol Med (Maywood).
2007;
232(5)
614-621
49
You M, Matsumoto M, Pacold C M, Cho W K, Crabb D W.
The role of AMP-activated protein kinase in the action of ethanol in the liver.
Gastroenterology.
2004;
127(6)
1798-1808
50
You M, Fischer M, Deeg M A, Crabb D W.
Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP).
J Biol Chem.
2002;
277(32)
29342-29347
51
Yin H Q, Kim M, Kim J H et al..
Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice.
Toxicol Appl Pharmacol.
2007;
223(3)
225-233
52
Ji C, Chan C, Kaplowitz N.
Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model.
J Hepatol.
2006;
45(5)
717-724
53
Shimomura I, Matsuda M, Hammer R E, Bashmakov Y, Brown M S, Goldstein J L.
Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice.
Mol Cell.
2000;
6(1)
77-86
54
Nakamuta M, Kohjima M, Morizono S et al..
Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.
Int J Mol Med.
2005;
16(4)
631-635
55
Kohjima M, Enjoji M, Higuchi N et al..
Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.
Int J Mol Med.
2007;
20(3)
351-358
56
Higuchi N, Kato M, Shundo Y et al..
Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease.
Hepatol Res.
2008;
38(11)
1122-1129
57
Caballero F, Fernández A, De Lacy A M, Fernández-Checa J C, Caballería J, García-Ruiz C.
Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.
J Hepatol.
2009;
50(4)
789-796
58
Shimomura I, Bashmakov Y, Horton J D.
Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.
J Biol Chem.
1999;
274(42)
30028-30032
59
Hotamisligil G S, Shargill N S, Spiegelman B M.
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.
Science.
1993;
259(5091)
87-91
60
Wellen K E, Hotamisligil G S.
Obesity-induced inflammatory changes in adipose tissue.
J Clin Invest.
2003;
112(12)
1785-1788
61
Tomita K, Tamiya G, Ando S et al..
Tumour necrosis factor alpha signaling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.
Gut.
2006;
55(3)
415-424
62
Li Z, Yang S, Lin H et al..
Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease.
Hepatology.
2003;
37(2)
343-350
63
Foretz M, Pacot C, Dugail I et al..
ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose.
Mol Cell Biol.
1999;
19(5)
3760-3768
64
Hegarty B D, Bobard A, Hainault I, Ferré P, Bossard P, Foufelle F.
Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c.
Proc Natl Acad Sci U S A.
2005;
102(3)
791-796
65
Azzout-Marniche D, Bécard D, Guichard C, Foretz M, Ferré P, Foufelle F.
Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.
Biochem J.
2000;
350(Pt 2)
389-393
66
Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F.
SREBP transcription factors: master regulators of lipid homeostasis.
Biochimie.
2004;
86(11)
839-848
67
Iizuka K, Horikawa Y.
ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.
Endocr J.
2008;
55(4)
617-624
68
Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K.
Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein.
Proc Natl Acad Sci U S A.
2001;
98(24)
13710-13715
69
Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K.
Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase.
J Biol Chem.
2002;
277(6)
3829-3835
70
Kabashima T, Kawaguchi T, Wadzinski B E, Uyeda K.
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver.
Proc Natl Acad Sci U S A.
2003;
100(9)
5107-5112
71
Iizuka K, Bruick R K, Liang G, Horton J D, Uyeda K.
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis.
Proc Natl Acad Sci U S A.
2004;
101(19)
7281-7286
72
Iizuka K, Miller B, Uyeda K.
Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice.
Am J Physiol Endocrinol Metab.
2006;
291(2)
E358-E364
73
Dentin R, Benhamed F, Hainault I et al..
Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice.
Diabetes.
2006;
55(8)
2159-2170
74
Gyamfi M A, Wan Y J.
Pathogenesis of alcoholic liver disease: the role of nuclear receptors.
Exp Biol Med (Maywood).
2010;
235(5)
547-560
75
Mitro N, Mak P A, Vargas L et al..
The nuclear receptor LXR is a glucose sensor.
Nature.
2007;
445(7124)
219-223
76
Lehmann J M, Kliewer S A, Moore L B et al..
Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway.
J Biol Chem.
1997;
272(6)
3137-3140
77
Janowski B A, Grogan M J, Jones S A et al..
Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta.
Proc Natl Acad Sci U S A.
1999;
96(1)
266-271
78
Janowski B A, Willy P J, Devi T R, Falck J R, Mangelsdorf D J.
An oxysterol signaling pathway mediated by the nuclear receptor LXR alpha.
Nature.
1996;
383(6602)
728-731
79
Joseph S B, Laffitte B A, Patel P H et al..
Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors.
J Biol Chem.
2002;
277(13)
11019-11025
80
Zhang Y, Yin L, Hillgartner F B.
SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes.
J Lipid Res.
2003;
44(2)
356-368
81
Cha J Y, Repa J J.
The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR.
J Biol Chem.
2007;
282(1)
743-751
82
Ai Z L, Chen D F.
The significance and effects of liver X receptor alpha in nonalcoholic fatty liver disease in rats.
Zhonghua Gan Zang Bing Za Zhi.
2007;
15(2)
127-130
83
Sanyal A J, Campbell-Sargent C, Mirshahi F et al..
Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities.
Gastroenterology.
2001;
120(5)
1183-1192
84
Chalasani N, Gorski J C, Asghar M S et al..
Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis.
Hepatology.
2003;
37(3)
544-550
85
Kotronen A, Seppälä-Lindroos A, Vehkavaara S et al..
Liver fat and lipid oxidation in humans.
Liver Int.
2009;
29(9)
1439-1446
86
Bugianesi E, Gastaldelli A, Vanni E et al..
Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.
Diabetologia.
2005;
48(4)
634-642
87
Dobrzyn P, Dobrzyn A, Miyazaki M et al..
Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver.
Proc Natl Acad Sci U S A.
2004;
101(17)
6409-6414
88
Hardie D G, Pan D A.
Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase.
Biochem Soc Trans.
2002;
30(Pt 6)
1064-1070
89
Muoio D M, Seefeld K, Witters L A, Coleman R A.
AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.
Biochem J.
1999;
338(Pt 3)
783-791
90
Tomita K, Tamiya G, Ando S et al..
AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats.
Alcohol Clin Exp Res.
2005;
29(12, Suppl)
240S-245S
91
Zhou G, Myers R, Li Y et al..
Role of AMP-activated protein kinase in mechanism of metformin action.
J Clin Invest.
2001;
108(8)
1167-1174
92
García-Villafranca J, Guillén A, Castro J.
Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver.
Biochimie.
2008;
90(3)
460-466
93
Liangpunsakul S, Sozio M S, Shin E et al..
Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels.
Am J Physiol Gastrointest Liver Physiol.
2010;
298(6)
G1004-G1012
94
Yang J, Maika S, Craddock L, King J A, Liu Z M.
Chronic activation of AMP-activated protein kinase-alpha1 in liver leads to decreased adiposity in mice.
Biochem Biophys Res Commun.
2008;
370(2)
248-253
95
Lin H Z, Yang S Q, Chuckaree C, Kuhajda F, Ronnet G, Diehl A M.
Metformin reverses fatty liver disease in obese, leptin-deficient mice.
Nat Med.
2000;
6(9)
998-1003
96
Shang J, Chen L L, Xiao F X, Sun H, Ding H C, Xiao H.
Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase.
Acta Pharmacol Sin.
2008;
29(6)
698-706
97
Haukeland J W, Konopski Z, Eggesbø H B et al..
Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial.
Scand J Gastroenterol.
2009;
44(7)
853-860
98
Uygun A, Kadayifci A, Isik A T et al..
Metformin in the treatment of patients with non-alcoholic steatohepatitis.
Aliment Pharmacol Ther.
2004;
19(5)
537-544
99
Zhou M, Xu A, Tam P K et al..
Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury.
Hepatology.
2008;
48(4)
1087-1096
100
Song Z, Zhou Z, Deaciuc I, Chen T, McClain C J.
Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease.
Hepatology.
2008;
47(3)
867-879
101
Ajmo J M, Liang X, Rogers C Q, Pennock B, You M.
Resveratrol alleviates alcoholic fatty liver in mice.
Am J Physiol Gastrointest Liver Physiol.
2008;
295(4)
G833-G842
102
You M, Rogers C Q.
Adiponectin: a key adipokine in alcoholic fatty liver.
Exp Biol Med (Maywood).
2009;
234(8)
850-859
103
Maeda N, Takahashi M, Funahashi T et al..
PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.
Diabetes.
2001;
50(9)
2094-2099
104
Kamada Y, Matsumoto H, Tamura S et al..
Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model.
J Hepatol.
2007;
47(4)
556-564
105
Kadowaki T, Yamauchi T, Kubota N.
The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS.
FEBS Lett.
2008;
582(1)
74-80
106
Galli A, Pinaire J, Fischer M, Dorris R, Crabb D W.
The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver.
J Biol Chem.
2001;
276(1)
68-75
107
Nakajima T, Kamijo Y, Tanaka N et al..
Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage.
Hepatology.
2004;
40(4)
972-980
108
Nanji A A, Dannenberg A J, Jokelainen K, Bass N M.
Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation.
J Pharmacol Exp Ther.
2004;
310(1)
417-424
109
Fischer M, You M, Matsumoto M, Crabb D W.
Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice.
J Biol Chem.
2003;
278(30)
27997-28004
110
Bronner M, Hertz R, Bar-Tana J.
Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase.
Biochem J.
2004;
384(Pt 2)
295-305
111
Leff T.
AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins.
Biochem Soc Trans.
2003;
31(Pt 1)
224-227
112
Lee S S, Pineau T, Drago J et al..
Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.
Mol Cell Biol.
1995;
15(6)
3012-3022
113
Kersten S, Seydoux J, Peters J M, Gonzalez F J, Desvergne B, Wahli W.
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting.
J Clin Invest.
1999;
103(11)
1489-1498
114
Nagasawa T, Inada Y, Nakano S et al..
Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet.
Eur J Pharmacol.
2006;
536(1-2)
182-191
115
Ip E, Farrell G, Hall P, Robertson G, Leclercq I.
Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice.
Hepatology.
2004;
39(5)
1286-1296
116
Harano Y, Yasui K, Toyama T et al..
Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver.
Liver Int.
2006;
26(5)
613-620
117
Kallwitz E R, McLachlan A, Cotler S J.
Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease.
World J Gastroenterol.
2008;
14(1)
22-28
118
Galli A, Crabb D, Price D et al..
Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells.
Hepatology.
2000;
31(1)
101-108
119
Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O.
Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice.
J Hepatol.
2008;
49(3)
441-450
120
Enomoto N, Takei Y, Hirose M et al..
Prevention of ethanol-induced liver injury in rats by an agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone.
J Pharmacol Exp Ther.
2003;
306(3)
846-854
121
LeBrasseur N K, Kelly M, Tsao T S et al..
Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues.
Am J Physiol Endocrinol Metab.
2006;
291(1)
E175-E181
122
Wu Z, Xie Y, Morrison R F, Bucher N L, Farmer S R.
PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes.
J Clin Invest.
1998;
101(1)
22-32
123
Ribon V, Johnson J H, Camp H S, Saltiel A R.
Thiazolidinediones and insulin resistance: peroxisome proliferator-activated receptor gamma activation stimulates expression of the CAP gene.
Proc Natl Acad Sci U S A.
1998;
95(25)
14751-14756
124
Shi H, Cave B, Inouye K, Bjørbaek C, Flier J S.
Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance.
Diabetes.
2006;
55(3)
699-707
125
Kim J B, Spiegelman B M.
ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism.
Genes Dev.
1996;
10(9)
1096-1107
126
Matsusue K, Haluzik M, Lambert G et al..
Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes.
J Clin Invest.
2003;
111(5)
737-747
127
Gavrilova O, Haluzik M, Matsusue K et al..
Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.
J Biol Chem.
2003;
278(36)
34268-34276
128
Savage D B, Tan G D, Acerini C L et al..
Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma.
Diabetes.
2003;
52(4)
910-917
129
Belfort R, Harrison S A, Brown K et al..
A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis.
N Engl J Med.
2006;
355(22)
2297-2307
130
Mayerson A B, Hundal R S, Dufour S et al..
The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes.
Diabetes.
2002;
51(3)
797-802
131
Sanyal A J, Chalasani N, Kowdley K V NASH CRN et al.
Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis.
N Engl J Med.
2010;
362(18)
1675-1685
132
Albano E.
Oxidative mechanisms in the pathogenesis of alcoholic liver disease.
Mol Aspects Med.
2008;
29(1-2)
9-16
133
Caldwell S H, Swerdlow R H, Khan E M et al..
Mitochondrial abnormalities in non-alcoholic steatohepatitis.
J Hepatol.
1999;
31(3)
430-434
134
Fabbrini E, Sullivan S, Klein S.
Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications.
Hepatology.
2010;
51(2)
679-689
135
Fabbrini E, Mohammed B S, Magkos F, Korenblat K M, Patterson B W, Klein S.
Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease.
Gastroenterology.
2008;
134(2)
424-431
136
Adiels M, Taskinen M R, Packard C et al..
Overproduction of large VLDL particles is driven by increased liver fat content in man.
Diabetologia.
2006;
49(4)
755-765
137
Noga A A, Zhao Y, Vance D E.
An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins.
J Biol Chem.
2002;
277(44)
42358-42365
138
Nishimaki-Mogami T, Suzuki K, Takahashi A.
The role of phosphatidylethanolamine methylation in the secretion of very low density lipoproteins by cultured rat hepatocytes: rapid inhibition of phosphatidylethanolamine methylation by bezafibrate increases the density of apolipoprotein B48-containing lipoproteins.
Biochim Biophys Acta.
1996;
1304(1)
21-31
139
Hoffman D R, Cornatzer W E.
Microsomal phosphatidylethanolamine methyltransferase: some physical and kinetic properties.
Lipids.
1981;
16(7)
533-540
140
Barak A J, Beckenhauer H C, Mailliard M E, Kharbanda K K, Tuma D J.
Betaine lowers elevated S-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats.
J Nutr.
2003;
133(9)
2845-2848
141
Kharbanda K K, Rogers II D D, Mailliard M E et al..
A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes.
J Nutr.
2005;
135(3)
519-524
142
Kharbanda K K, Mailliard M E, Baldwin C R, Beckenhauer H C, Sorrell M F, Tuma D J.
Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.
J Hepatol.
2007;
46(2)
314-321
143
Sparks J D, Collins H L, Chirieac D V et al..
Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase.
Biochem J.
2006;
395(2)
363-371
144
Améen C, Edvardsson U, Ljungberg A et al..
Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver.
J Biol Chem.
2005;
280(2)
1224-1229
145
Sugimoto T, Yamashita S, Ishigami M et al..
Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats.
J Hepatol.
2002;
36(2)
157-162
David CrabbM.D.
545 Barnhill Drive EH 317
Indianapolis, IN 46202
eMail: dcrabb@iupui.edu