Horm Metab Res 2010; 42(13): 982-986
DOI: 10.1055/s-0030-1267950
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Resistance Exercise on Serum Levels of Growth Factors in Humans

S. Rojas Vega1 , A. Knicker1 , W. Hollmann2 , W. Bloch2 , H. K. Strüder1
  • 1Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
  • 2Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
Weitere Informationen

Publikationsverlauf

received 07.06.2010

accepted 04.10.2010

Publikationsdatum:
04. November 2010 (online)

Abstract

Studies have shown that, depending on intensity, endurance exercise increases neurotrophins and thereby induces neuroplasticity. However, data on the effect of acute resistance exercise at different intensities on neurotrophins is not yet available. Thus, we conducted 2 trials to determine the serum concentrations of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF-1) before and after a low or high intensity resistance exercise in 11 healthy humans. Exercise load was related to 3 repetitions of maximal effort isokinetic work involving knee extension under alternating concentric and eccentric conditions for muscle work at a velocity of 60°s-1 registered during a familiarization session. The torque angle diagrams from these 3 repetitions were averaged and displayed as target curves in the test sessions, the intensity of resistance exercise was set at 40% (trial: R1) or 110% (trial: R2) of the averaged individual maximal effort curve, respectively. After resistance exercise, serum IGF-1 was increased significantly (p<0.01) by 28% in R1 and 16% in R2 compared to pre-exercise levels. Resistance exercise did not increase serum VEGF at any time point. Serum BDNF increased during exercise compared to post-exercise, but did not achieve significant difference from pre-exercise values. The present study shows that either low or high resistance exercise increases levels of IGF-1, but not of BDNF or VEGF. This finding is of importance for health promotion by means of resistance exercise because circulating serum IGF-1 has been demonstrated to mediate positive effects of exercise on brain functions.

References

  • 1 Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, Gulanick M, Laing ST, Stewart KJ. Resistance exercise in individuals with and without cardiovascular disease: 2007 update.  Circulation. 2007;  116 572-584
  • 2 Mazzeo RS, Tanaka H. Exercise prescription for the elderly: current recommendations.  Sports Med. 2001;  31 809-818
  • 3 Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO. Exercise treatment for depression.  Am J Prev Med. 2005;  28 1-8
  • 4 Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A. Ageing, fitness and neurocognitive function.  Nature. 1999;  400 418-419
  • 5 Colcombe SJ, Erikson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans.  J Gerontol A Biol Sci Med. 2003;  58 176-180
  • 6 Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched enviroment.  Nature. 1997;  386 493-495
  • 7 Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins.  Neurorehabil Neural Repair. 2005;  4 283-295
  • 8 Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute brain derived neurotrophic factor and cortisol response to ramp incremental exercise to exhaustion in humans.  Brain Res. 2006;  1121 59-65
  • 9 Rojas Vega S, Abel Th, Bloch W, Hollmann W, Strüder HK. Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans.  Neurosci. 2008;  153 1064-1070
  • 10 Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann K-M, Heesen C. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls.  J Neuroimmunol. 2003;  138 99-105
  • 11 Aberg MA, Aberg ND, Hedbacker H, Oskarsson J, Eriksson PS. Peripheral infusion of IG-1 selectively induces neurogenesis in the adult rat hippocampus.  J Neurosci. 2000;  20 2896-2903
  • 12 Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain.  Proc Natl Acad Sci USA. 2004;  101 9833-9838
  • 13 Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise–induced cognitive function.  Neurosci. 2006;  140 823-833
  • 14 Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle.  J Appl Physiol. 2004;  96 19-24
  • 15 Kraus RM, Stallings HW, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men.  J Appl Physiol. 2003;  96 1445-1450
  • 16 Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, Palmer TD. VEGF is necessary for exercise-induced adult hippocampal neurogenesis.  Eur J Neurosci. 2003;  18 2803-2812
  • 17 Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Piña IL, Stein RA, Williams M, Bazzarre T. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine.  Circulation. 2000;  101 828-833
  • 18 Tanasescu M, Leitzmann M, Rimm EB, Willet WC, Stampfer MJ, Hu FB. Exercise type and intensity in relation to coronary heart dieases in men.  JAMA. 2002;  288 1994-2000
  • 19 Pollock ML, Evans WJ. Resistance training for health and disease.  Med Sci Sports Exer. 1999;  31 10-11
  • 20 Adamo ML, Farrar RP. Resistance training and IGF 1 involvement in the maintenance of muscle mass during the aging process.  Ageing Res Rev. 2006;  5 310-311
  • 21 Poehlman ET, Dvorak RV, DeNino WF, Brochu M, Ades PA. Effects of resitance training and endurance training on insulin sensitivity in nonobese, young women.  J Clin Endocrinol Metab. 2000;  85 2463-2468
  • 22 Iwata M Suzuki S, Hayakawa K, Inoue T, Naruse K. Uniaxial cyclic stretch increases glucose uptake into C2C12 myotubes trough a signaling pathway independent of insulin-like growth factor 1.  Horm Metab Res. 2009;  41 16-22
  • 23 Qiu S, Wu C, Lin F, Chen L, Huang Z, Jiang Z. Exercise training improved insulin sensitivity and ovarian morphology in rats with polycystic ovary syndrome.  Horm Metab Res. 2009;  41 880-885
  • 24 Prabhakaran B, Dowling EA, Branch JD, Swain DP, Leutholtz BC. Effect of 14 weeks of resistance training on lipid profile and body fat percentage in premenopausal women.  Br J Sports Med. 1999;  33 190-195
  • 25 Trejo JL, Carro E, Torres Aleman I. Circulating insulin-like growth factor I mediates exercise induced increases in the number of new neurons in the adult hippocampus.  J Neurosci. 2001;  21 1628-1634
  • 26 Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders.  Curr Opin Psychiatry. 2008;  21 290-295
  • 27 Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity–antidepressant treatment combination: impact on brain derived neurotrophic factor and behavior in an animal model.  Behav Brain Res. 2001;  120 87-95
  • 28 Khawaja X, Xu J, Liang J-J, Barrett JE. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant teratment: implications for depressive disorders and future therapies.  J Neurosci. 2004;  75 451-460
  • 29 Russo-Neustadt A, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus.  Neurosci. 2000;  101 305-312
  • 30 Bondy CA, Lee WH. Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implication.  Ann NY Acad Sci. 1993;  692 33-43
  • 31 Leventhal PS, Russell JW, Feldman EL. IGFs and the nervous system. In: Rosenfeld RG, and, Roberts ChT, eds. The IGF System: Molecular Biology, physiology and clinical applications. New Jersey Humana Press; 1999: 425-455
  • 32 Duman CH, Schlesinger L, Terwilliger R, Russell DS, Newton SS, Duman RS. Peripheral insulin-like growth factor-I produces antidepresant-like behavior factor and contributes to the effects of exercise.  Behav Brain Res. 2009;  198 366-371
  • 33 Carro E, Nuñez Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor mediates effects of exercise on the brain.  J Neurosci. 2000;  20 2926-2933
  • 34 Schwarz AJ, Brasel J, Hintz RL, Mohan S, Cooper DM. Acute effect of brief low-and high-intensity exercise on circulating insulin growth factor (IGF) I, IGF-binding protein-3 and its proteolysis in young healthy men.  J Clin Endocrinol Metab. 1996;  81 3492-3497
  • 35 Cheuvront SN, Chinevere TD, Ely BR, Kenefick RW, Goodman DA, McClung JP, Sawka MN. Serum S-100 beta response to exercise-heat strain before and after acclimation.  Med Sci Sports Exerc. 2008;  40 1477-1482
  • 36 Eriksson PS, Perfilieva E, Björk–Eriksson Th, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus.  Nat Med. 1998;  4 1313-1317
  • 37 Trejo JL, Carro E, Nuñez A, Torres Aleman I. Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-1.  Rev Neurosci. 2002;  13 365-374
  • 38 Llorens-Martín M, Torres-Alemán I, Trejo JL. Growth factors as mediators of exercise actions on the brain.  Neuromolecular Med. 2008;  10 99-107

Correspondence

S. Rojas VegaMD, PhD 

Institute of Movement and

Neurosciences

German Sport University of

Cologne

Am Sportpark Müngersdorf 6

50933 Cologne

Germany

Telefon: +49/221/4982 4270

Fax: +49/221/4973 454

eMail: Rojas@dshs-koeln.de