Int J Sports Med 2011; 32(3): 211-215
DOI: 10.1055/s-0030-1268011
Orthopedics and Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

An Anatomical Study of the Proximal Hamstring Muscle Complex to Elucidate Muscle Strains in this Region

N. Battermann1 , 3 , H.-J. Appell1 , J. Dargel2 , J. Koebke3
  • 1Physiology & Anatomy, German Sport University, Cologne, Germany
  • 2Department of Orthopedics, University Cologne, Germany
  • 3Center of Anatomy, University of Cologne, Germany
Further Information

Publication History

accepted after revision October 05, 2010

Publication Date:
11 November 2010 (online)

Abstract

Muscle strain injuries are common in sports, and a high incidence is reported for the hamstring muscles, especially in the proximal region, where the long head of the biceps femoris muscle is most frequently affected. To look for some architectural peculiarities, which would make this muscle vulnerable, 101 legs of embalmed human cadavers were dissected and descriptively examined, morphometric data were obtained in the proximal region, and slices of plastinated specimens were microscopically examined. The 3 muscles composing the proximal hamstring complex are partly twisted around each other and possess common fibrous adhesions. Biceps femoris (BF) and semitendinosus (ST) muscles form a common head, to which the ST contributes the majority of fascicles extending 9 cm down from the ischiac tuberosity, thereby attaching to the common tendon at a remarkable pennation angle. The first BF fascicles origin from the common tendon only at 6 cm distance from the ischiac tuberosity. It is concluded that the high incidence of proximal BF strains may be a misinterpretation due to insufficient imaging and the complex architecture. It is suggested that the pennation angle at which the ST inserts to the common tendon makes this muscle especially vulnerable for strains during forced eccentric contractions.

References

  • 1 Brandser EA, El-Khoury GY, Kathol MH, Callaghan JJ, Tearse DS. Hamstring injuries: radiographic, conventional tomographic, CT, and MR imaging characteristics.  Radiology. 1995;  197 257-262
  • 2 Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting.  J Biomech. 2007;  40 3555-3562
  • 3 Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, Burke F, Bass C. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries.  Am J Roentgenol. 2004;  183 975-984
  • 4 Davis KW. Imaging of the hamstrings.  Sem Musculoskelet Radiol. 2008;  12 28-41
  • 5 De Smet AA, Best TM. MR Imaging of the distribution of acute hamstring injuries in athletes.  Am J Roentgenol. 2000;  174 393-399
  • 6 Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football – the UEFA injury study.  Br J Sports Med. 2009;  DOI: doi: 10.1136/bjsm.2009.060582
  • 7 Fukunaga T, Kawakami Y, Kuno S, Funato K, Fukashiro S. Muscle architecture and function in humans.  J Biomech. 1997;  30 457-463
  • 8 Garrett WE, Rich FR, Nikolaou PK, Vogler JB. Computed tomography of hamstring muscle strains.  Med Sci Sports Exerc. 1989;  21 506-514
  • 9 Harriss J, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 10 Higashihara A, Ono T, Kubota J, Okuwaki T, Fukubayashi T. Functional differences in the activity of the hamstring muscles with increasing running speed.  J Sports Sci. 2010;  28 1085-1092
  • 11 Hoang PD, Herbert RD, Todd G, Gorman RB, Gandevia SC. Passive mechanical properties of human gastrocnemius muscle tendon units, muscle fascicles and tendons in vivo.  J Exp Biol. 2007;  210 4159-4168
  • 12 Hoyt DF, Wickler SJ, Biewener AA, Cogger EA, De La Paz KL. In vivo muscle function vs. speed. I. Muscle strain in relation to length change of the muscle-tendon unit.  J Exp Biol. 2005;  208 1175-1190
  • 13 Järvinen TA, Kaariainen M, Järvinen M, Kalimo H. Muscle strain injuries.  Curr Opin Rheumatol. 2000;  12 155-161
  • 14 Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: Correlation of ultrasound findings with cadaveric dissection.  J Biomech. 2009;  42 2549-2554
  • 15 Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length.  J Electromyogr Kinesiol. 2010;  DOI: doi: 10.1016/j.jelekin.2010.07.012
  • 16 Kuno S, Fukunaga T. Measurement of muscle fiber displacement during contraction by real-time ultrasonography in humans.  Eur J Appl Physiol. 1995;  70 45-48
  • 17 Linklater JM, Hamilton B, Carmichael J, Orchard J, Wood DG. Hamstring injuries: Anatomy, imaging, and intervention.  Sem Musculoskelet Radiol. 2010;  14 131-161
  • 18 Markee JE, Logue JT, Willams M, Stanton WB, Wrenn RN, Walker LB. 2-joint muscles of the thigh.  J Bone Joint Surg. 1955;  37 125-142
  • 19 Martin BF. The origins of the hamstring muscles.  J Anat. 1968;  102 345-352
  • 20 Martin DC, Medri MK, Chow RS, Oxorn V, Leekam RN, Agur AM, McKee NH. Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements.  J Anat. 2001;  199 429-434
  • 21 Miller SL, Gill J, Webb GR. The proximal origin of the hamstrings and surrounding anatomy encountered during repair. A cadaveric study.  J Bone Joint Surg Am. 2007;  89 44-48
  • 22 Moore KL. Clinically Oriented Anatomy, 2nd Ed. Williams & Wilkins, Baltimore, Hong Kong, London, Sydney; 1985: 451
  • 23 Orchard JW, Best TM, Müller-Wohlfahrt HW, Hunter G, Hamilton BH, Webborn N, Jaques R, Kenneally D, Budgett R, Phillips N, Becker C, Glasgow P. The early management of muscle strains in the elite athlete: Best practice in a world with a limited evidence basis.  Br J Sports Med. 2008;  42 158-159
  • 24 Rath B, Notermans HP, Frank D, Walpert J, Deschner J, Luering CM, Koeck FX, Koebke J. Arterial anatomy of the hallucal sesamoids.  Clin Anat. 2009;  22 755-760
  • 25 Rehorn M, Blemker S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D model.  J Biomech. 2010;  DOI: doi: 10.1016/j.jbiomech.2010.05.011
  • 26 Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: Using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition.  Am J Roentgenol. 2002;  179 1621-1628
  • 27 Stauber WT. Eccentric action of muscles: Physiology, injury and adaptation.  Exerc Sports Sci Rev. 1989;  17 157-185
  • 28 Tidball JG, Salem G, Zernicke R. Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries.  J Appl Physiol. 1993;  74 1280-1286
  • 29 Verrall GM, Slavotinek JP, Barnes PG, Fon GT, Spriggins AJ. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury in magnetic resonance imaging.  Br J Sports Med. 2001;  35 435-439
  • 30 Verrall GM, Slavotinek GP, Barnes PG, Fon GT. Diagnostic and prognostic value of clinical findings in 83 athletes with posterior thigh injury.  Am J Sports Med. 2003;  31 969-973
  • 31 Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate?.  Clin Orthop Relat Res. 2009;  467 1074-1082
  • 32 Woodley SG, Mercer SR. Hamstring strains – where do they occur?.  NZ J Physiother. 2004;  32 22-28
  • 33 Woodley SG, Mercer SR. Hamstring muscles: Architecture and innervation.  Cells Tissues Organs. 2005;  179 125-141
  • 34 Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football – analysis of hamstring injuries.  Br J Sports Med. 2004;  38 36-41

Correspondence

Prof. Hans-Joachim Appell

German Sport University

Physiology & Anatomy

Am Sportpark Müngersdorf 6

50933 Cologne

Germany

Phone: +49/221/4982 5430

Email: appell@dshs-koeln.de