Int J Sports Med 2011; 32(3): 199-204
DOI: 10.1055/s-0030-1268487
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Protocol Design on Lactate Minimum Power

M. A. Johnson1 , G. R. Sharpe1
  • 1Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
Weitere Informationen

Publikationsverlauf

accepted after revision October 28, 2010

Publikationsdatum:
16. Dezember 2010 (online)

Abstract

The aim of this investigation was to use a validated lactate minimum test protocol and evaluate whether blood lactate responses and the lactate minimum power are influenced by the starting power (study 1) and 1 min inter-stage rest intervals (study 2) during the incremental phase. Study 1: 8 subjects performed a lactate minimum test comprising a lactate elevation phase, recovery phase, and incremental phase comprising 5 continuous 4 min stages with starting power being 40% or 45% of the maximum power achieved during the lactate elevation phase, and with power increments of 5% maximum power. Study 2: 8 subjects performed 2 identical lactate minimum tests except that during one of the tests the incremental phase included 1 min inter-stage rest intervals. The lactate minimum power was lower when the incremental phase commenced at 40% (175±29 W) compared to 45% (184±30 W) maximum power (p<0.01), and was increased when 1 min inter-stage rest intervals were included during the incremental phase (192±25 vs. 200±26 W, p<0.01). In conclusion, changes in lactate minimum power were small and thus unlikely to compromise test validity and therefore training status evaluation and exercise prescription.

References

  • 1 Bacon L, Kern M. Evaluating a test protocol for predicting maximum lactate steady state.  J Sports Med Phys Fitness. 1999;  39 300-308
  • 2 Bangsbo J, Graham T, Johansen L, Saltin B. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.  J Appl Physiol. 1994;  77 1890-1895
  • 3 Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM. Effect of test interruptions on blood lactate during constant workload testing.  Med Sci Sports Exerc. 2003;  35 1626-1630
  • 4 Carter H, Jones AM, Doust JH. Effect of incremental test protocol on the lactate minimum speed.  Med Sci Sports Exerc. 1999;  31 837-845
  • 5 Denadai BS, Higino WP. Effect of the passive recovery period on the lactate minimum speed in sprinters and endurance runners.  J Sci Med Sport. 2004;  7 488-496
  • 6 Gladden LB. A lactatic perspective on metabolism.  Med Sci Sports Exerc. 2008;  40 477-485
  • 7 Gullstrand L, Sjodin B, Svedenhag J. Blood sampling during continuous running and 30-s intervals on a treadmill. Effects on the lactate threshold results?.  Scand J Med Sci Sports. 1994;  4 239-242
  • 8 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 9 Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold.  Int J Sports Med. 1985;  6 117-130
  • 10 Hiyane WC, Simões HG, Campbell CSG. Critical velocity as a noninvasive method to estimate the lactate minimum velocity on cycling.  Rev Bras Med Esporte. 2006;  12 340-344
  • 11 Johnson MA, Sharpe GR, Brown PI. Investigations of the lactate minimum test.  Int J Sports Med. 2009;  30 448-454
  • 12 Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state.  Med Sci Sports Exerc. 1998;  30 1304-1313
  • 13 MacIntosh BR, Esau S, Svedahl K. The lactate minimum test for cycling: estimation of the maximal lactate steady state.  Can J Appl Physiol. 2002;  27 232-249
  • 14 Morris N, Gass G, Thompson M, Conforti D. Physiological responses to intermittent and continuous exercise at the same relative intensity in older men.  Eur J Appl Physiol. 2003;  90 620-625
  • 15 Ribeiro L, Balikian P, Malachias P, Baldissera V. Stage length, spline function and lactate minimum swimming speed.  J Sports Med Phys Fitness. 2003;  43 312-318
  • 16 Ribeiro LFP, Goncalves CGS, Kater DP, Lima MCS, Gobatto CA. Influence of recovery manipulation after hyperlactemia induction on the lactate minimum intensity.  Eur J Appl Physiol. 2009;  105 159-165
  • 17 Rotstein A, Dotan R, Zigel L, Greenberg T, Benyamini Y, Falk B. The effect of pre-test carbohydrate ingestion on the anaerobic threshold, as determined by the lactate-minimum test.  Appl Physiol Nutr Metab. 2007;  32 1058-1064
  • 18 Sabapathy S, Kingsley RA, Schneider DA, Adams L, Morris NR. Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease.  Thorax. 2004;  59 1026-1031
  • 19 Simões HG, Campbell CSG, Kokubun E, Denadai BS, Baldissera V. Blood glucose responses in humans mirror lactate responses for individual anaerobic threshold and for lactate minimum in track tests.  Eur J Appl Physiol. 1999;  80 34-40
  • 20 Simões HG, Denadai BS, Baldissera V, Campbell CSG, Hill DW. Relationships and significance of lactate minimum, critical velocity, heart rate deflection and 3 000 m track-tests for running.  J Sports Med Phys Fitness. 2005;  45 441-451
  • 21 Simões HG, Hiyane WC, Sotero RC, Pardono E, Puga GM, Lima LC, Campbell CS. Polynomial modelling for the identification of lactate minimum velocity by different methods.  J Sports Med Phys Fitness. 2009;  49 14-18
  • 22 Smith MF, Balmer J, Coleman DA, Bird SR, Davison RCR. Method of lactate elevation does not affect the determination of the lactate minimum.  Med Sci Sports Exerc. 2002;  34 1744-1749
  • 23 Sotero RC, Pardono E, Campbell CS, Simões HG. Indirect assessment of lactate minimum and maximal blood lactate steady-state intensity for physically active individuals.  J Strength Cond Res. 2009;  23 847-853
  • 24 Strupler M, Mueller G, Perret C. Heart rate-based lactate minimum test: a reproducible method.  Br J Sports Med. 2009;  43 432-436
  • 25 Svedahl K, MacIntosh BR. Anaerobic threshold: The concept and methods of measurement.  Can J Appl Physiol. 2003;  28 299-323
  • 26 Tegtbur U, Busse MW, Braumann KM. Estimation of an individual equilibrium between lactate production and catabolism during exercise.  Med Sci Sports Exerc. 1993;  25 620-627
  • 27 Turner PT, Cathcart AJ, Parker ME, Butterworth C, Wilson J, Ward SA. Oxygen uptake and muscle desaturation kinetics during intermittent cycling.  Med Sci Sports Exerc. 2006;  38 492-503

Correspondence

Dr. Michael Alan Johnson

Nottingham Trent University

School of Science and Technology

Clifton Campus

NG11 8NS Nottingham

United Kingdom

Telefon: +44/11/5848 3362

Fax: +44/11/5848 6636

eMail: michael.johnson@ntu.ac.uk