Int J Sports Med 2011; 32(2): 117-121
DOI: 10.1055/s-0030-1268490
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Validation of a New Cycle Ergometer

M. F. Glaner1 , R. A. S. Silva1
  • 1UNIEURO University Center, Physical Education, Brasília, Brazil
Further Information

Publication History

accepted after revision October 24, 2010

Publication Date:
16 December 2010 (online)

Abstract

The purpose of this study was to test the concurrent validity of the ICBE compared to the Monark® cycle ergometer by indirect dynamic calibration. 42 men were randomly submitted to 2 maximal stress tests with increments of 50 W at 2-min intervals. One test was performed on the Monark® bicycle (834/E) and the other on the ICBE. Cardiovascular, perceived exertion and hemodynamic responses were compared between the 2 bicycles. No differences (p>0.05) were observed in resting heart rate (HR), maximum HR, peak oxygen uptake (VO2P L·min−1 and VO2PmL·kg−1·min−1), and number of stages completed. High correlations (r>0.85) were found between HR and VO2P. Residual analysis indicated strong agreement between the 2 cycle ergometers in terms of VO2P L·min−1 [−0.36–0.30] and VO2P mL·kg−1·min−1 [−4.98–4.46]. Residual dispersion (r=0.25 for both) showed that the mathematical differences in VO2P L·min−1 and VO2P mL·kg−1·min−1 between cycle ergometers were independent. The correlation coefficient (r) and coefficient of determination (R2) between VO2P L·min−1 (r=0.90; R2=0.80) and VO2P mL·kg−1·min−1 (r=0.90; R2=0.81) obtained for the 2 cycle ergometers were high, whereas the standard error of the estimate was low (0.186 L·min−1 and 2.56 mL·kg−1·min−1, respectively). The ICBE presents concurrent validity for use in submaximal and maximal cardiopulmonary tests.

References

  • 1 Barbinau C, Leger L, Long A. Variability of maximum oxygen measurement in various metabolic systems.  J Strength Cond Res. 1999;  13 318-324
  • 2 Bassett DR, Howley ET, Thompson DL, King GA, Strath SJ, McLaughlin JE, Parr BB. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system.  J Appl Physiol. 2001;  91 218-224
  • 3 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods for clinical measurement.  Lancet. 1986;  1 307-310
  • 4 Burke ER. High Tech Cycling. 2nd ed, Champaign (IL): Humans Kinetics; 2003
  • 5 Caria MA, Tangianu F, Concu A, Crisafulli A, Mameli O. Quantification of Spinning® bike performance during a standard 50-minutes class.  J Sports Sci. 2007;  25 421-429
  • 6 Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance – part 2.  J Sports Med. 2005;  35 313-337
  • 7 Guiraud T, Léger L, Long A, Thébault N, Tremblay J, Passelergue P. VO2 requirement at different displayed power outputs on five cycle ergometer models: a preliminary study.  Br J Sports Med. 2010;  44 449-454
  • 8 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sport Med. 2009;  30 701-702
  • 9 Heil DP, Derrick TR, Whittlesey S. The relationships between preferred and optimal positioning during submaximal cycle ergometry.  Eur J Appl Physiol. 1997;  75 160-165
  • 10 Hibi N, Fujinaga H, Ishii K. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.  Eur J Appl Physiol. 1996;  74 435-442
  • 11 Hilloskopi H, Manttari A, Pasanen M. The comparison between three different respiratory gas analysers.  Med Sci Sports Exerc. 2000;  31 S354
  • 12 Hodges LD, Brodie DA, Bromley PD. Validity and reliability of select commercially available metabolic analyzer systems.  Scand J Med Sci Sports. 2005;  15 271-279
  • 13 Iscoe KE, Campbell EJ, Jamnik V, Perkins B, Riddell M. Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system.  Diabetes Technol Ther. 2006;  8 627-635
  • 14 Kang J, Chaloupka EC, Mastrangelo MA, Hoffman JR, Ratamess NA, O’Connor E. Metabolic and perceptual responses during spinning® cycle exercise.  Med Sci Sports Exerc. 2005;  37 853-859
  • 15 Lucia A, Balmer J, Davison RCR, Pérez M, Santalla A, Smith PM. Effects of the rotor pedaling system on the performance of trained cyclists during incremental and constant-load cycle-ergometer tests.  Int J Sports Med. 2004;  25 479-485
  • 16 MacFarlane D. Automated metabolic gas analysis systems: a review.  Sports Med. 2001;  31 841-861
  • 17 MacIntosh BR, Bryan SN, Rishang P, Norris SR. Evaluation of Monark Wingate ergometer by direct measurement of resistance and velocity.  Can J Appl Physiol. 2001;  26 543-558
  • 18 Marsh AP, Martin PE, Foley KO. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.  Med Sci Sports Exerc. 2000;  32 1630-1634
  • 19 Neder JA, Stein R. A simplified strategy for the estimation of the exercise ventilatory thresholds.  Med Sci Sports Exerc. 2006;  38 1007-1013
  • 20 Noble BJ, Robertson RJ. Perceived Exertion. Champaign (IL): Human Kinetics; 1996
  • 21 Paton CD, Hopkins WH. Ergometer error and biological variation in power output in a performance test with three cycle ergometers.  Int J Sports Med. 2006;  27 444-447
  • 22 Petroski EL, Glaner MF, Pires-Neto CS. Equations for estimating body composition of Brazilians. In: Petroski EL, Pires-Neto CS, Glaner MF (eds). Biométrica. Jundiaí: Fontoura; 2010: 249-268
  • 23 Reiser M, Meyer T, Kindermann W, Daugs R. Transferability of workload measurements between three different types of ergometer.  Eur J Appl Physiol. 2000;  82 245-249
  • 24 Ricard MD, Hills-Meyer P, Miller MG, Michael TJ. The effects of bicycle frame geometry on muscle activation and power during a Wingate anaerobic test.  J Sports Sci Med. 2006;  5 25-32
  • 25 Silva RAS. Development and calibration of an indoor cycling bicycle with load graduation.  Braz J Kinanthropom Hum Performance [Internet]. Available from: http://www.periodicos.ufsc.br.br/index.php/rbcdh/article/view/3880/401/1 2006;  [cited 2006 Jul 31]; 8 (2)
  • 26 Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, (eds). Techniques for Measuring Body Composition. Washington (DC): National Academy of Sciences, National Research Council; 1961: 223-244
  • 27 Von Döbeln W. A simple bicycle ergometer.  J Appl Physiol. 1954;  7 222-224
  • 28 Wergel-Kolmert U, Wisén A, Wohlfart B. Repeatability of measurements of oxygen consumption, heart rate and Borg's scale in men during ergometer cycling.  Clin Physiol Funct Imaging. 2002;  22 261-265
  • 29 Yule E, Kaminsky LA, Sedlock DA, King BA, Whaley MH. Inter-laboratory reliability of VO2max and sub maximal measurements.  Med Sci Sports Exerc. 1996;  28 S15

Correspondence

Maria Fátima GlanerPhD 

Quadra 201

Lote 6 Bloco B – apt. 803

Águas Claras

71937-540 BrasÍlia

Brazil

Phone: + 55/61/3356 9000

Fax: + 55/61/3356 3010

Email: mfglaner@gmail.com