Planta Med 2011; 77(6): 618-630
DOI: 10.1055/s-0030-1270949
Tropical Diseases
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Plant Extracts, Isolated Phytochemicals, and Plant-Derived Agents Which Are Lethal to Arthropod Vectors of Human Tropical Diseases – A Review

Adrian Martin Pohlit1 , 2 , Alex Ribeiro Rezende2 , Edson Luiz Lopes Baldin3 , Norberto Peporine Lopes2 , Valter Ferreira de Andrade Neto4
  • 1Instituto Nacional de Pesquisa da Amazônia, Manaus, Amazonas State, Brazil
  • 2Universidade de São Paulo, Ribeirão Preto, São Paulo State, Brazil
  • 3Universidade Estadual de São Paulo, Botucatu, São Paulo State, Brazil
  • 4Universidade Federal de Rio Grande do Norte, Natal, Rio Grande do Norte State, Brazil
Further Information

Publication History

received Sept. 23, 2010 revised February 19, 2011

accepted March 4, 2011

Publication Date:
22 March 2011 (online)

Abstract

The recent scientific literature on plant-derived agents with potential or effective use in the control of the arthropod vectors of human tropical diseases is reviewed. Arthropod-borne tropical diseases include: amebiasis, Chagas disease (American trypanosomiasis), cholera, cryptosporidiosis, dengue (hemorrhagic fever), epidemic typhus (Brill-Zinsser disease), filariasis (elephantiasis), giardia (giardiasis), human African trypanosomiasis (sleeping sickness), isosporiasis, leishmaniasis, Lyme disease (lyme borreliosis), malaria, onchocerciasis, plague, recurrent fever, sarcocystosis, scabies (mites as causal agents), spotted fever, toxoplasmosis, West Nile fever, and yellow fever. Thus, coverage was given to work describing plant-derived extracts, essential oils (EOs), and isolated chemicals with toxic or noxious effects on filth bugs (mechanical vectors), such as common houseflies (Musca domestica Linnaeus), American and German cockroaches (Periplaneta americana Linnaeus, Blatella germanica Linnaeus), and oriental latrine/blowflies (Chrysomya megacephala Fabricius) as well as biting, blood-sucking arthropods such as blackflies (Simulium Latreille spp.), fleas (Xenopsylla cheopis Rothschild), kissing bugs (Rhodnius Stål spp., Triatoma infestans Klug), body and head lice (Pediculus humanus humanus Linnaeus, P. humanus capitis De Geer), mosquitoes (Aedes Meigen, Anopheles Meigen, Culex L., and Ochlerotatus Lynch Arribálzaga spp.), sandflies (Lutzomyia longipalpis Lutz & Neiva, Phlebotomus Loew spp.), scabies mites (Sarcoptes scabiei De Geer, S. scabiei var hominis, S. scabiei var canis, S. scabiei var suis), and ticks (Ixodes Latreille, Amblyomma Koch, Dermacentor Koch, and Rhipicephalus Koch spp.). Examples of plant extracts, EOs, and isolated chemicals exhibiting noxious or toxic activity comparable or superior to the synthetic control agents of choice (pyrethroids, organophosphorous compounds, etc.) are provided in the text for many arthropod-vectors of tropical diseases.

Supporting information available online at

http://www.thieme-connect.de/ejournals/toc/plantamedica

References

  • 1 Graczyk T K, Knight R, Tamang L. Mechanical transmission of human protozoan parasites by insects.  Clin Microbiol Rev. 2005;  18 128-132
  • 2 Sharma P, Sharma J D. A review of plant species assessed in vitro for antiamoebic activity or both antiamoebic and antiplasmodial properties.  Phytother Res. 2001;  15 1-17
  • 3 Rassi Jr A, Marin-Neto J A. Chagas disease.  Lancet. 2010;  375 449
  • 4 Carod-Artal F J, Gascon J. Chagas disease and stroke.  Lancet Neurol. 2010;  9 533
  • 5 Costa J. The synanthropic process of Chagas disease vectors in Brazil, with special attention to Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae, Triatominae) population, genetical, ecological, and epidemiological aspects.  Mem Inst Oswaldo Cruz. 1999;  94 239-241
  • 6 Fernandes A J, Chiari E, Casanova C, Dias J C P, Romanha A J. The threat of reintroduction of natural transmission of Chagas' disease in Bambuí, Minas Gerais state, Brazil, due to Panstrongylus megistus.  Mem Inst Oswaldo Cruz. 1992;  87 285-289
  • 7 World Health Organization (WHO) .Specific document URLs are provided in the supplementary data. Available at. http://www.who.int/ Accessed September 16, 2010
  • 8 Fotedar R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India.  Acta Tropica. 2001;  78 31-34
  • 9 Bechah Y, Capo C, Mege J L, Raoult D. Epidemic typhus.  Lancet Infect Dis. 2008;  8 417-426
  • 10 Center for Disease Control and Prevention (CDC) .Specific document URLs are provided in the supplementary data (available online). Available at. http://www.cdc.gov/ Accessed September 16, 2010
  • 11 Doiz O, Clavel A, Morales S, Varea M, Castillo F J, Rubio C, Gomez-Lus R. House fly (Musca domestica) as a transport vector of Giardia lamblia.  Folia Parasitol. 2000;  47 330-331
  • 12 Minnaganti V R. Isosporiasis. Medscape; eMedicine http://emedicine.medscape.com/article/219776-overview Accessed September 16, 2010
  • 13 Leishmaniasis. NIH. Available at. http://www.nlm.nih.gov/medlineplus/leishmaniasis.html%23cat59 Accessed September 16, 2010
  • 14 Soares C O, Ishikawa M M, Fonseca A H, Yoshinari N H. Borreliose, agentes e vetores.  Pesq Vet Bras. 2000;  20 1-19
  • 15 Alvim N C, Bento M A F, Martins L A. Borreliose de Lyme – a doença da década.  Rev Cient Elet Med Vet. 2005;  4 http://www.revista.inf.br/veterinaria04/revisao/revisao04.pdf. , ISSN 1679-7353 (online). Accessed September 16, 2010
  • 16 The Center for Food Security and Public Health .Zoonotic diseases by routes of transmission: companion animals. Iowa State University (ISU). Available at. http://www.cfsph.iastate.edu/ Accessed September 16, 2010
  • 17 Tzanetou K. Scabies: reappearance of a forgotten parasitic disease.  Deltio llenikes Mikrobiologikes Etaireias. 2006;  51 346-352 (Chemical Abstracts)
  • 18 Angerami R N, Nunes E M, Nascimento E M M, Freitas A R, Kemp B, Feltrin A F C, Pacola M R, Perecin G E, Sinkoc V, Resende M R, Katz G, Jacintho da Silva L. Clusters of Brazilian spotted fever in São Paulo State, southeastern Brazil. A review of official reports and the scientific literature.  Eur Soc Clin Microbiol Infect Dis. 2009;  15 202-204
  • 19 Shaalan E A S, Canyon D, Younes M W F, Abdel-Wahab H, Mansour A H. A review of botanical phytochemicals with mosquitocidal potential.  Environ Int. 2005;  31 1149-1166
  • 20 Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – a review.  Food Chem Toxicol. 2008;  46 446-475
  • 21 Burfield T, Reekie S L. Mosquitoes, malaria and essential oils.  Int J Aromather. 2005;  15 30-41
  • 22 Isman M B, Machial C M. Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC, editors. Naturally occurring bioactive compounds.  Adv Phytomed. 2006;  3 29-44
  • 23 Nerio L S, Olivero-Verbel J, Stashoenko E. Repellent activity of essential oils: a review.  Bioresource Technol. 2010;  101 372-378
  • 24 Pohlit A M, Lopes N P, Gama R A, Tadei W P, Andrade-Neto V F. Patent literature on mosquito repellent inventions which contain plant essential oils – a review.  Planta Med. ;  DOI: 10.1055/s-0030-1270723 , advance online publication 15 February 2011
  • 25 Marten G G. Larvicidal algae. In: Floore TG, editor. Biorational Control of Mosquitoes.  Am Mosq Ctrl Assoc Bull. 2007;  23 (Suppl. 2) 177-183
  • 26 Matur B M, Davou B J. Comparative larvicidal property of leaf extract of Chromolaena odorata L. (Compositae) and chlopyrifos (organophosphorus compound) on Simulium larvae.  Biomed Environ Sci. 2007;  20 313-316
  • 27 Spero N C, Gonzalez Y I, Scialdone M A, Hallahan D L. Repellency of hydrogenated catmint oil formulations to black flies and mosquitoes in the field.  J Med Entomol. 2008;  45 1080-1086
  • 28 Twatsin A, Thavara U, Chansang U, Chavalittumrong P, Boonruad T, Wongsinkongman P, Bansidhi J, Mulla M S. Field evaluation of deet, Repel Care®, and three plant-based essential oil repellents against mosquitoes, black flies (Diptera: Simuliidae), and land leeches (Arhynchobdellida: Haemadipsidae) in Thailand.  J Am Mosq Ctrl Assoc. 2006;  22 306-313
  • 29 Sukontason K L, Boonchu N, Sukontason K, Choochote W. Effects of eucalyptol on house fly (Diptera: Muscidae) and blow fly (Diptera: Calliphoridae).  Rev Inst Med Trop S Paulo. 2004;  46 97-101
  • 30 Siriwattanarungsee S, Sukontason K L, Olson J K, Chailapakul O, Sukontason K. Efficacy of neem extract against the blowfly and housefly.  Parasitol Res. 2008;  103 535-544
  • 31 Kumarasinghe S P W, Karunaweera N D, Ihalamulla R L, Arambewela L S R, Dissanayake R D S C T. Larvicidal effects of mineral turpentine, low aromatic white spirits, aqueous extracts of Cassia alata, and aqueous extracts, ethanolic extracts and essential oil of betel leaf (Piper betle) on Chrysomya megacephala.  International J Dermatol. 2002;  41 877-880
  • 32 Shen L R, Li H Y, Zhou Y G, Gu S, Lou Y G. Ovicidal activity of nine essential oils against Chrysomya megacephara in bacon and kipper.  Chin J Appl Ecol. 2007;  18 2343-2346
  • 33 Yoon C, Kang S H, Yang J O, Noh D J, Indiragandhi P, Kim G H. Repellent activity of citrus oils against the cockroaches Blattella germanica, Periplaneta americana and P. fuliginosa.  J Pestic Sci. 2009;  34 77-88
  • 34 Phillips A K, Appel A G, Sims S R. Topical toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae).  J Econ Entomol. 2010;  103 448-459
  • 35 Bisseleua H B D, Gbewonyo S W K, Obeng-Ofori D. Toxicity, growth regulatory and repellent activities of medicinal plant extracts on Musca domestica L. (Diptera: Muscidea).  African J Biotechnol. 2008;  7 4635-4642
  • 36 Moreira M D, Picanço M C, Barbosa L C A, Guedes R N C, Barros E C, Campos M R. Compounds from Ageratum conyzoides: isolation, structural elucidation and insecticidal activity.  Pest Manag Sci. 2007;  63 615-621
  • 37 Huang J G, Zhou L J, Xu H H, Li W O. Insecticidal and cytotoxic activities of extracts of Cacalia tangutica and its two active ingredients against Musca domestica and Aedes albopictus.  J Econ Entomol. 2009;  102 1444-1447
  • 38 Tarelli G, Zerba E N, Alzogaray R A. Toxicity to vapor exposure and topical application of essential oils and monoterpenes on Musca domestica (Diptera: Muscidae).  J Econ Entomol. 2009;  102 1383-1388
  • 39 Palacios S M, Bertoni A, Rossi Y, Santander R, Urzúa A. Efficacy of essential oils from edible plants as insecticides against the house fly, Musca domestica L.  Molecules. 2009;  14 1938-1947
  • 40 Mohottalage S, Tabacchi R, Guerin P M. Components from Sri Lankan Piper betle L. leaf oil and their analogues showing toxicity against the housefly, Musca domestica.  Flavour Fragr J. 2007;  22 130-138
  • 41 Dolan M C, Dietrich G, Panella N A, Montenieri J A, Karchesy J J. Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae).  J Econ Entomol. 2007;  100 622-625
  • 42 Panella N A, Dolan M C, Karchesy J J, Xiong Y, Peralta-Cruz J, Khasawneh M, Montenieri J A, Maupin G O. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar.  J Med Entomol. 2005;  42 352-358
  • 43 Coelho A A M, Paula J E, Espíndola L S. Insecticidal activity of cerrado plant extracts on Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg (Hemiptera: Reduviidae), under laboratory conditions.  Neotrop Entomol. 2006;  35 133-138
  • 44 Mello C B, Uzeda C D, Bernardino M V, Mendonça-Lopes D, Kelecom A, Fevereiro P C A, Guerra M S, Oliveira A P, Rocha L M, Gonzalez M S. Effects of the essential oil obtained from Pilocarpus spicatus Saint-Hilaire (Rutaceae) on the development of Rhodnius prolixus nymphae.  Rev Bras Farmacogn [Braz J Pharmacogn]. 2007;  17 514-520
  • 45 Sfara V, Zerba E N, Alzogaray R A. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus.  J Med Entomol. 2009;  46 511-515
  • 46 Ferrero A A, González J O W, Chopa C S. Biological activity of Schinus molle on Triatoma infestans.  Fitoterapia. 2006;  77 381-383
  • 47 Jadhav V, Kore A, Kadam V J. In-vitro pediculicidal activity of Hedychium spicatum essential oil.  Fitoterapia. 2007;  78 470-473
  • 48 Ashok V A, Srinivas A, Ravitej K, Gopinadh V. Ethyl acetate extract of Annona squamosa seeds containing anti-head lice activity.  Pharmacogn J. 2009;  1 207-209
  • 49 Picollo M I, Toloza A C, Cueto G M, Zygadlo J, Zerba E. Anticholinesterase and pediculicidal activities of monoterpenoids.  Fitoterapia. 2008;  79 271-278
  • 50 Toloza A C, Vassena C, Picollo M I. Ovicidal and adulticidal effects of monoterpenoids against permethrin-resistant human head lice, Pediculus humanus capitis.  Med Vet Entomol. 2008;  22 335-339
  • 51 Dua V K, Pandey A C, Raghavendra K, Gupta A, Sharma T, Dash A P. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes.  Malaria J. 2009;  8 124 , [online, 6 pp]
  • 52 Howard A F V, Adongo E A, Hassanali A, Omlin F X, Wanjoya A, Zhou G, Vulule J. Laboratory evaluation of the aqueous extract of Azadirachta indica (Neem) wood chippings on Anopheles gambiae s.s. (Diptera: Culicidae) mosquitoes.  J Med Entomol. 2009;  46 107-114
  • 53 Kiprop A K, Kiprono P C, Rajab M S, Kosgei M K. Limonoids as larvicidal components against mosquito larvae (Aedes aegypti Linn.).  Z Naturforsch C. 2007;  62 826-828
  • 54 Silva E C C, Cavalcanti B C, Amorim R C N, Lucena J F, Quadros D S, Tadei W P, Montenegro R C, Costa-Lotufo L V, Pessoa C, Moraes M O, Nunomura R C S, Nunomura S M, Melo M R S, Andrade-Neto V F, Silva L F R, Vieira P P R, Pohlit A M. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).  Mem Inst Oswaldo Cruz. 2009;  104 48-55
  • 55 Gu H J, Cheng S S, Huang C G, Chen W J, Chang S T. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica.  Parasitol Res. 2009;  105 1455-1458
  • 56 Madhu S K, Shaukath A K, Vijayan V A. Efficacy of bioactive compounds from Curcuma aromatica against mosquito larvae.  Acta Trop. 2010;  113 7-11
  • 57 Silva H H G, Geris R, Rodrigues-Filho E, Rocha C, Silva I G. Larvicidal activity of oil-resin fractions from the Brazilian medicinal plant Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) against Aedes aegypti (Diptera, Culicidae).  Rev Soc Bras Med Trop. 2007;  40 264-267
  • 58 Geris R, Silva I G, Silva H H G, Barison A, Rodrigues-Filho E, Ferreira A G. Diterpenoids from Copaifera reticulata Ducke with larvicidal activity against Aedes aegypti (L.) (Diptera, Culicidae).  Rev Inst Med Trop S Paulo. 2008;  50 25-28
  • 59 Rahuman A A, Venkatesan P, Geetha K, Gopalakrishnan G, Bagavan A, Kamaraj C. Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpene derived from Ficus racemosa Linn.  Parasitol Res. 2008;  103 333-339
  • 60 Innocent E, Joseph C C, Gikonyo N K, Moshi M J, Nkunya M H H, Hassanali A. Mosquito larvicidal constituents from Lantana viburnoides sp viburnoides var. kisi (A. Rich) Verdc (Verbenaceae).  J Vector Borne Dis. 2008;  45 240-244
  • 61 Rahuman A A, Gopalakrishnan G, Venkatesan P, Geetha K. Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet.  Parasitol Res. 2008;  102 981-988
  • 62 Bagavan A, Rahuman A A, Kamaraj C, Geetha K. Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).  Parasitol Res. 2008;  103 223-229
  • 63 Ghosh A, Chowdhury N, Chandra G. Laboratory evaluation of a phytosteroid compound of mature leaves of day jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms.  Parasitol Res. 2008;  103 271-277
  • 64 Cheng S S, Huang C G, Chen W J, Kuo Y H, Chang S T. Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species.  Bioresour Technol. 2008;  99 3617-3622
  • 65 Georges K, Jayaprakasam B, Dalavoy S S, Nair M G. Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso.  Bioresour Technol. 2008;  99 2037-2045
  • 66 Sreelatha T, Hymavathi A, Murthy J M, Rani P U, Rao J M, Babu K S. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb.  Bioorg Med Chem Lett. 2010;  20 2974-2977
  • 67 Maniafu B M, Wilber L, Ndiege I O, Wanjala C C, Akenga T A. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae.  Mem Inst Oswaldo Cruz. 2009;  104 813-817
  • 68 Garcez W S, Garcez F R, da Silva L M G E, Hamerski L. Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil.  Bioresour Technol. 2009;  100 6647-6650
  • 69 Rahuman A A, Venkatesan P, Gopalakrishnan G. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad.  Parasitol Res. 2008;  103 1383-1390
  • 70 Coelho J S, Santos N D L, Napoleão T H, Gomes F S, Ferreira R S, Zingali R B, Coelho L C B B, Leite S P, Navarro D M A F, Paiva P M G. Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae.  Chemosphere. 2009;  77 934-938
  • 71 Sá R A, Santos N D L, Silva C S B, Napoleão T H, Gomes F S, Cavada B S, Coelho L C, Navarro D M, Bieber L W, Paiva P M. Larvicidal activity of lectins from Myracrodruon urundeuva on Aedes aegypti.  Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 2009;  149 300-306
  • 72 Chowdhury N, Laskar S, Chandra G. Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves.  BMC Complement Alternat Med. 2008;  8 62 , [online, 6 pp]
  • 73 Vasconcelos J N, Lima J Q, Lemos T L G, Oliveira M C F, Almeida M M B, Andrade-Neto M, Mafezoli J, Arriaga A M C, Santiago G M P, Braz-Filho R. Estudo químico e biológico de Tephrosia toxicaria Pers.  Quim Nova. 2009;  32 382-386
  • 74 Aivazi A A, Vijayan V A. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.  Parasitol Res. 2009;  104 1289-1293
  • 75 Pohlit A M, Quignard E L J, Nunomura S M, Tadei W P, Hidalgo A F, Pinto A C S, Santos E V M, Morais S K R, Saraiva R C G, Ming L C, Alecrim A M, Ferraz A B, Pedroso A C S, Diniz E V, Finney E K, Gomes E O, Dias H B, Souza K S, Oliveira L C P, Don L C, Queiroz M M A, Henrique M C, Santos M, Lacerda-Junior O S, Pinto O S, Silva S G, Graça Y R. Screening of plants found in the State of Amazonas, Brazil for larvicidal activity against Aedes aegypti larvae.  Acta Amazonica. 2004;  34 97-105
  • 76 Pohlit A M, Pinto A C S, Cavalcanti B C, Pessoa C O, Silva E C C S, Chaves F C M, Nogueira K L, Lotufo L, Silva L F R, Melo M R S, Vieira P P R, Mause R, Amorim R C N, Tadei W P, Andrade-Neto V. Biopharmaceutical synthesis. Carioca JOB, organizer Brazilian network on green chemistry-awareness, responsability and action. Fortaleza, Brasil; Edições Universidade do Ceará (UFC) 2008: 347-372
  • 77 Perumalsamy H, Kim N-J, Ahn Y-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae).  J Med Entomol. 2009;  46 1420-1423
  • 78 Silva W J, Dória G A A, Maia R T, Nunes R S, Carvalho G A, Blank A F, Alves P B, Marçal R M, Cavalcanti S C H. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides.  Bioresour Technol. 2008;  99 3251-3255
  • 79 Cheng S S, Chang H T, Lin C Y, Chen P S, Huang C G, Chen W J, Chang S T. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae.  Pest Manag Sci. 2009;  65 339-343
  • 80 Cheng S S, Chua M T, Chang E H, Huang C G, Chen W J, Chang S T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages.  Bioresour Technol. 2009;  100 465-470
  • 81 Cheng S S, Huang C G, Chen Y J, Yu J J, Chen W J, Chang S T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species.  Bioresour Technol. 2009;  100 452-456
  • 82 Cheng S S, Liu J Y, Huang C G, Hsui Y R, Chen W J, Chang S T. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species.  Bioresour Technol. 2009;  100 457-464
  • 83 Kimbaris A C, Kioulos E, Koliopoulos G, Polissiou M G, Michaelakis A. Coactivity of sulfide ingredients: a new perspective of the larvicidal activity of garlic essential oil against mosquitoes.  Pest Manag Sci. 2009;  65 249-254
  • 84 Melliou E, Michaelakis A, Koliopoulos G, Skaltsounis A L, Magiatis P. High quality bergamot oil from Greece: chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.  Molecules. 2009;  14 839-849
  • 85 Knio K M, Usta J, Dagher S, Zournajian H, Kreydiyyeh S. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius.  Bioresour Technol. 2008;  99 763-768
  • 86 Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou M G. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae).  Parasitol Res. 2009;  105 769-773
  • 87 Waliwitiya R, Kennedy C J, Lowenberger C A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae).  Pest Manag Sci. 2009;  65 241-248
  • 88 Kiran S R, Devi P S. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC.  Parasitol Res. 2007;  101 413-418
  • 89 Lucia A, Licastro S, Zerba E, Audino P G, Masuh H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils.  Bioresour Technol. 2009;  100 6083-6087
  • 90 Samarasekera R, Weerasinghe I S, Hemalal K D P. Insecticidal activity of menthol derivatives against mosquitoes.  Pest Management Science Pest Manag Sci. 2008;  64 290-295
  • 91 Andrade-Coelho C A, Souza N A, Gouveia C, Silva V C, Gonzalez M S, Rangel E F. Effect of fruit and leaves of Meliaceae plants (Azadirachta indica and Melia azedarach) on the development of Lutzomyia longipalpis larvae (Diptera: Psychodidae: Phlebotominae) under experimental conditions.  J Med Entomol. 2009;  46 1125-1130
  • 92 Luitgards-Moura J F, Bermudez E G C, Rocha A F I, Tsouris P, Rosa-Freitas M G. Preliminary assays indicate that Antonia ovata (Loganiaceae) and Derris amazonica (Papilionaceae), ichthyotoxic plants used for fishing in Roraima, Brazil, have an insecticide effect on Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae).  Mem Inst Oswaldo Cruz. 2002;  97 737-742
  • 93 Maciel M V, Morais S M, Bevilaqua C M L, Silva R A, Barros R S, Sousa R N, Sousa L C, Brito E S, Souza-Neto M A. Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis.  Vet Parasitol. 2010;  167 1-7
  • 94 Kebede Y, Gebre-Michael T, Balkew M. Laboratory and field evaluation of neem (Azadirachta indica A. Juss) and Chinaberry (Melia azedarach L.) oils as repellents against Phlebotomus orientalis and P. bergeroti (Diptera: Psychodidae) in Ethiopia.  Acta Trop. 2010;  113 145-150
  • 95 Valerio L, Maroli M. Evaluation of repellent and anti-feeding effect of garlic oil (Allium sativum) against the bite of phlebotomine sandflies (Diptera: Psychodidae).  Annali dell'Istituto Superiore di Sanita. 2005;  41 253-256
  • 96 Xu J, Fan Q J, Yin Z Q, Li X T, Du Y H, Jia R Y, Wang K Y, Lv C, Ye G, Geng Y, Su G, Zhao L, Hua T X, Shi F, Zhang L, Wu C L, Tao C, Zhang Y X, Shi D X. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro.  Vet Parasitol. 2010;  169 399-403
  • 97 Du Y Y H, Li J L, Jia R Y, Yin Z Q, Li X T, Lv C, Ye G, Zhang L, Zhang Y Q. Acaricidal activity of four fractions and octadecanoic acid-tetrahydrofuran-3,4-diyl ester isolated from chloroform extracts of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae in vitro.  Vet Parasitol. 2009;  163 175-178
  • 98 Pasay C, Mounsey K, Stevenson G, Davis R, Arlian L, Morgan M, Vyszenski-Moher D, Andrews K, McCarthy J. Acaricidal activity of eugenol based compounds against scabies mites.  PLoS One. 2010;  5 1-9
  • 99 Soares S F, Borge L M F, Braga R S, Ferreira L L, Louly C C B, Tresvenzol M F, Paula J R, Ferri P H. Repellent activity of plant-derived compounds against Amblyomma cajennense nymphs.  Vet Parasitol. 2010;  167 67-73
  • 100 Kaoneka B, Mollel M, Lyatuu F. Leaf essential oil composition and tick repellency activity of Commiphora swynnertonii Burtt.  J Biol Res Thessalon. 2007;  8 213-216
  • 101 Tunón H, Thorsell W, Mikiver A, Malander I. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum.  Fitoterapia. 2006;  77 257-261
  • 102 Bissinger B W, Zhu J, Apperson C S, Sonenshine D E, Watson D W, Roe R M. Comparative efficacy of BioUD to other commercially available arthropod repellents against the ticks Amblyomma americanum and Dermacentor variabilis on cotton cloth.  Am J Trop Med Hyg. 2009;  81 685-690
  • 103 Witting-Bissinger B E, Stumpf C F, Donohue K V, Apperson C S, Roe R M. Novel arthropod repellent, BioUD, is an efficacious alternative to deet.  J Med Entomol. 2008;  45 891-898
  • 104 Carrol J F, Paluch G, Coats J, Kramer M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays.  Exp Appl Acarol. 2010;  51 383-392
  • 105 Bessette S M. Pest repellent compositions containing geraniol and essential oils and methods for use. US Patent 2009263515. 2009
  • 106 Ribeiro V L S, Santos J C, Bordignon S A L, Apel M A, Henriques A T, Poser G L. Acaricidal properties of the essential oil from Hesperozygis ringens on the cattle tick Riphicephalus microplus.  Bioresour Technol. 2010;  101 2506-2509
  • 107 Pirali-Kheirabadi K, Razzaghi-Abyaneh M, Halajian A. Acaricidal effect of Pelargonium roseum and Eucalyptus globulus essential oils against adult stage of Rhipicephalus annulatus in vitro.  Vet Parasitol. 2009;  162 346-349
  • 108 Olivo C J, Carvalho N M, Silva J H S, Vogel F F, Massariol P, Meinerz G, Agnolin C, Morel A F, Viau L V. Citronella oil on the control of cattle ticks.  Ciencia Rural. 2008;  38 406-410
  • 109 Martins R M. In vitro study of the acaricidal activity of the essential oil from the citronella of Java (Cymbopogon winterianus Jowitt) to the tick Boophilus microplus.  Rev Bras Pl Med. 2006;  8 71-78
  • 110 Martins R M, Gonzalez F H D. Use of Java (Cymbopogon winterianus Jowitt) (Panicoidideae) as an acaricide against the tick Boophilus microplus Canestrini.  Rev Bras Pl Med. 2007;  9 1-8
  • 111 Cetin H, Cilek J E, Aydin L, Yanikoglu A. Acaricidal effects of the essential oil of Origanum minutiflorum against Rhipicephalus turanicus.  Vet Parasitol. 2009;  160 359-361
  • 112 Pirali-Kheirabadi K, Silva J A T. Lavandula angustifolia essential oil as a novel and promising natural candidate for tick (Rhipicephalus [Boophilus] annulatus) control.  Exp Parasitol. 2010;  126 184-186
  • 113 Landau S Y, Provenza F D, Gardner D R, Pfister J A, Knoppel E L, Peterson C, Kababya D, Needham G R, Villalba J J. Neem-tree (Azadirachta indica Juss.) extract as a feed additive against the American dog tick (Dermacentor variabilis) in sheep (Ovis aries).  Vet Parasitol. 2009;  165 311-317

Prof. PhD Valter Ferreira de Andrade Neto

Departamento de Microbiologia e Parasitologia
Laboratório de Biologia da Malária e Toxoplasmose
Universidade Federal do Rio Grande do Norte – Campus Universitário

Av. Senador Salgado Filho – Lagoa Nova

CEP 69061-000 – Natal – RN

Brazil

Phone: +55 84 32 15 34 37 ext. 2 26

Fax: +55 84 32 11 92 10

Email: aneto@cb.ufrn.br