Abstract
This study evaluated the hypolipidemic and antiobesity effects of phloroacetophenone (2′,4′,6′-trihydroxyacetophenone, THA) isolated from Myrcia multiflora and their relationship with triglyceride (TG) intestinal absorption and pancreatic lipase activity inhibition. The hypolipidemic effect of THA was evaluated by acute (Triton WR-1339 treatment) and chronic assay (high-fat diet treatment), the antiobesity effect was evaluated by chronic assay (high-fat diet treatment), while the inhibition of enzymatic activity of pancreatic lipase was measured in the intestinal tissue of mice treated with high olive oil concentration. In the acute assay, THA caused greater total cholesterol (37 %) and triglyceride (46 %) serum level reduction than lovastatin (32 and 1 %), a HMG‐CoA reductase inhibitor or orlistat (26 and 34 %), a gastrointestinal lipase inhibitor. In addition, in the chronic assay with a high-fat diet, THA reduced cholesterol and triglyceride levels (32 and 61 %, respectively) while lovastatin showed a decrease of 35 and 49 %, respectively. THA also caused a reduction in weight gain very similar to orlistat (40 and 38 %, respectively) when the animals were submitted to a high-fat diet. Moreover, THA showed a stronger and continuous pancreatic lipase inhibitory activity when compared with orlistat, causing inhibition of this enzyme during 6 hours associated to a significant reduction of triglyceride serum levels. The in vivo antiobesity and hypolipidemic effects of THA may be partly mediated by delaying the intestinal absorption of dietary fat by inhibiting pancreatic lipase activity.
Key words
antiobesity effect - mixed hypolipidemic activity -
Myrcia multiflora
- Myrtaceae - pancreatic lipase inhibitor - 2′,4′,6′‐trihydroxyacetophenone
References
1
Friedman J M.
Obesity: Causes and control of excess body fat.
Nature.
2009;
459
340-342
2 World Health Organization (WHO) .Fact sheet: obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/print.html Accessed May 9, 2009
3
Weaver J U.
Classical endocrine diseases causing obesity.
Front Horm Res.
2008;
36
212-228
4
Ofir D, Laveneziana P, Webb K A, O'Donnell D E.
Ventilatory and perceptual responses to cycle exercise in obese women.
J Appl Physiol.
2007;
102
2217-2226
5
Sørensen T I, Virtue S, Vidal-Puig A.
Obesity as a clinical and public health problem: Is there a need for a new definition based on lipotoxicity effects?.
Biochim Biophys Acta.
2010;
1801
400-404
6
Eckel R H.
Clinical practice. Nonsurgical management of obesity in adults.
N Engl J Med.
2008;
358
1941-1950
7
Flegal K M, Graubard B I, Williamson D F, Gail M H.
Cause-specific excess deaths associated with underweight, overweight, and obesity.
JAMA.
2007;
298
2028-2037
8
Marinou K, Tousoulis D, Antonopoulos A S, Stefanadi E, Stefanadis C.
Obesity and cardiovascular disease: from pathophysiology to risk stratification.
Int J Cardiol.
2010;
138
3-8
9
Friedman J M.
A war on obesity, not the obese.
Science.
2003;
299
856-858
10
Lenz M, Richter T, Mühlhauser I.
The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review.
Dtsch Arztebl Int.
2009;
106
641-648
11
Woo M N, Bok S H, Lee M K, Kim H J, Jeon S M, Do G M, Shin S K, Ha T Y, Choi M S.
Anti-obesity and hypolipidemic effects of a proprietary herb and fiber combination (S & S PWH) in rats fed high-fat diets.
J Med Food.
2008;
11
169-178
12
Bamba V, Rader D J.
Obesity and atherogenic dyslipidemia.
J Gastrol.
2007;
132
2181-2190
13
Kuo D H, Yeh C H, Shieh P C, Cheng K C, Chen F A, Cheng J T.
Effect of shanzha, a Chinese herbal product, on obesity and dyslipidemia in hamsters receiving high-fat diet.
J Ethnopharmacol.
2009;
124
544-550
14
Zalesin K C, Franklin B A, Miller W M, Peterson E D, McCullough P A.
Impact of obesity on cardiovascular disease.
Endocrinol Metab Clin N Am.
2008;
37
663-684
15
Lee K R, Hong S W, Kwak J H, Pyo S, Jee O P.
Phenolic constituents from the aerial parts of Artemisia stolonifera .
Arch Pharm Res.
1996;
19
231-234
16
Chosson E, Chaboud A, Chulia A J, Raynaud J.
A phloroacetophenone glucoside from Rhododendron ferrugineum .
Phytochemistry.
1998;
47
87-88
17
Dai Y, He X J, Zhou G X, Kurihara H, Ye W C, Yao X S.
Acylphloroglucinol glycosides from the fruits of Pyracantha fortuneana .
J Asian Nat Prod Res.
2008;
10
111-117
18
Yoshikawa M, Shimada H, Nishida N, Li Y, Toguchida I, Yamahara J, Matsuda H.
Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B.
Chem Pharm Bull.
1998;
46
113-119
19
Matsuda H, Nishida N, Yoshikawa M.
Antidiabetic principles of natural medicines. V. Aldose reductase inhibitors from Myrcia multiflora DC. (2): Structures of myrciacitrins III, IV, and V.
Chem Pharm Bull.
2002;
50
429-431
20
Suksamrarn A, Eiamong S, Piyachaturawat P, Byrne L T.
A phloracetophenone glucoside with choleretic activity from Curcuma comosa .
Phytochemistry.
1997;
45
103-105
21
Brandão M G L, Nery C G C, Mamão M A S, Krettli A U.
Two methoxylated flavone glycosides from Bidens pilosa .
Phytochemistry.
1998;
48
397-399
22
Zhao L M, Jin H S, Sun L P, Piao H R, Quan Z S.
Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives.
Bioorg Med Chem Lett.
2005;
15
5027-5029
23
Vásquez-Freire M J, Lamela M, Calleja J M.
Hypolipidaemic activity of a polysaccharide extract from Fucus vesiculosus L.
Phytother Res.
1996;
10
647-650
24
Allain C C, Poon L C, Chan C S G, Richmond W, Fu P C.
Enzymatic determination of total serum cholesterol.
Clin Chem.
1974;
20
470-475
25
McGowan M W, Artiss J D, Strandbergh D R, Zak B.
A peroxidase-coupled method for the colorimetric determination of serum triglycerides.
Clin Chem.
1983;
29
538-542
26
Kurooka S, Okamoto S, Hashimoto M.
A novel and simple colorimetric assay for human serum lipase.
J Biochem.
1977;
81
361-369
27 Harborne J B. Phenolic compounds. Harborne JB Phytochemical methods: a guide to modern techniques of plant analysis, 3rd edition. London; Chapman & Hall 1998: 40-106
28
Piyachaturawat P, Suwanampai P, Komaratat P, Chuncharunee A, Suksamrarn A.
Effect of phloracetophenone on bile flow and biliary lipids in rats.
Hepatol Res.
1998;
12
198-206
29
Piyachaturawat P, Chai-ngam N, Chuncharunee A, Komaratat P, Suksamrarn A.
Choleretic activity of phloracetophenone in rats: structure-function studies using acetophenone analogues.
Eur J Pharmacol.
2000;
387
221-227
30
Piyachaturawat P, Tubtim C, Chuncharunee A, Komaratat P, Suksamrarn A.
Evaluation of the acute and subacute toxicity of a choleretic phloracetophenone in experimental animals.
Toxicol Lett.
2002;
129
123-132
31
Piyachaturawat P, Srivoraphan P, Chuncharunee A, Komaratat P, Suksamrarn A.
Cholesterol lowering effects of a choleretic phloracetophenone in hypercholesterolemic hamsters.
Eur J Pharmacol.
2002;
439
141-147
32
Ito H, Nakasuga K, Ohshima A, Sakai Y, Maruyama T, Kaji Y, Harada M, Jingu S, Sakamoto M.
Excess accumulation of body fat is related to dyslipidemia in normal-weight subjects.
Int J Obes Relat Metab Disord.
2004;
28
242-247
33
MacBride P.
Triglycerides and risk for coronary artery disease.
Curr Atheroscler Rep.
2008;
10
386-390
34 Garattini S, Paoletti R. Drugs affecting lipid metabolism. Amsterdam; Elsevier 1961: 144
35
Pedrosa R C, Meyre-Silva C, Cechinel-Filho V, Benassi J C, Oliveira L F S, Zancanaro V, Dal Magro J, Yunes R A.
Hypolipidaemic activity of methanol extract of Aleurites moluccana .
Phytother Res.
2002;
16
765-768
36
Amrani S, Harnafi H, Bouanani N E H, Aziz M, Caid H S, Manfredini S, Besco E, Napolitano M, Bravo E.
Hypolipidaemic activity of aqueous Ocimum basilicum extract in acute hyperlipidaemia induced by triton WR-1339 in rats and its antioxidant property.
Phytother Res.
2006;
20
1040-1045
37
Ueshima K, Akihisa-Umeno H, Nagayoshi A, Takakura S, Matsuo M, Mutoh S.
A gastrointestinal lipase inhibitor reduces progression of atherosclerosis in mice fed a western-type diet.
Eur J Pharmacol.
2004;
501
137-142
38
Martins F, Noso T M, Porto V B, Curiel A, Gambero A, Bastos D H M, Ribeiro M L, Carvalho P O.
Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high-fat-diet-induced obese mice.
Obesity.
2010;
18
42-47
39
Schieffer B, Drexler H.
Role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, angiotensin-converting enzyme inhibitors, cyclooxygenase-2 inhibitors, and aspirin in anti-inflammatory and immunomodulatory treatment of cardiovascular diseases.
Am J Cardiol.
2003;
91
12H-18H
40
Schiavo M, Lunardelli A, Oliveira J R.
Influência da dieta na concentração sérica de triglicerídeos.
J Bras Patol Med Lab.
2003;
39
283-288
41
McNeely W, Benfield P.
Orlistat.
Drugs.
1998;
56
241-249
42
Ballinger A, Peikin S R.
Orlistat: its current status as an antiobesity drug.
Eur J Pharmacol.
2002;
440
109-117
43
Reitsma J B, Cabezas M C, de Bruin T W, Erkelens D W.
Relationship between improved postprandial lipemia and low-density lipoprotein metabolism during treatment with tetrahydrolipstatin, a pancreatic lipase inhibitor.
Metabolism.
1994;
43
293-298
44
Ellrichmann M, Kapelle M, Ritter P R, Holst J J, Herzig K H, Schmidt W E, Schmitz F, Meier J J.
Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations.
J Clin Endocrinol Metab.
2008;
93
3995-3998
45
Hsieh C J, Wang P W, Liu R T, Tung S C, Chien W Y, Chen J F, Chen C H, Kuo M C, Hu Y H.
Orlistat for obesity: benefits beyond weight loss.
Diabetes Res Clin Pract.
2005;
67
78-83
46
Birari R B, Bhutani K K.
Pancreatic lipase inhibitors from natural sources: unexplored potential.
Drug Discov Today.
2007;
12
879-889
Rozangela Curi Pedrosa
Departamento de Bioquímica Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Trindade
88040-900 Florianópolis – SC
Brazil
Phone: +55 48 37 21 50 48
Fax: +55 48 37 21 96 72
Email: roza@ccb.ufsc.br