Planta Med 2011; 77(11): 1099-1109
DOI: 10.1055/s-0030-1270982
Lectures 7th Tannin Conference
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Configurational Studies of Complexes of Tea Catechins with Caffeine and Various Cyclodextrins

Takashi Ishizu1 , Shinya Kajitani1 , Hiroyuki Tsutsumi1 , Takashi Sato1 , Hideji Yamamoto2 , Chikako Hirata1
  • 1Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
  • 2Department of Applied Biological Science, Faculty of Engineering, Fukuyama University, Fukuyama, Hiroshima, Japan
Further Information

Publication History

received Sept. 29, 2010 revised March 9, 2011

accepted March 16, 2011

Publication Date:
06 April 2011 (online)

Abstract

A suspension of an equimolecular amount of ent-gallocatechin-3-O-gallate (entGCg) and caffeine in water afforded two kinds of crystals, which were 1 : 2 and 2 : 2 complexes of entGCg and caffeine. The stereochemical structures and intermolecular interactions between entGCg and caffeine were determined by X‐ray crystallographic analysis. The crystal structure of entGCg was determined and compared with those of the 1 : 2 and 2 : 2 complexes. Epigallocatechin-3-O-gallate (EGCg) formed a 1 : 1 complex with β-cyclodextrin (CD), in which the aromatic A ring and a part of the heterocyclic C ring were included from the wide secondary hydroxyl group side of the β-CD cavity in aqueous solution, while the B rings and 3-O-gallate groups (B' rings) were left outside the cavity. In contrast, entGCg formed a 1 : 2 complex with β-CD, in which the aromatic A and B rings of entGCg were included by two molecules of β-CD.

Supporting information available online at http://www.thieme-connect.de/ejournals/toc/plantamedica

References

  • 1 Hemingway R W, Foo L Y, Porter L J. Linkage isomerism in trimeric and polymeric 2,3-cis procyanidins.  J Chem Soc [Perkin I]. 1982;  1209-1216
  • 2 Porter L J. Flavans and proanthocyanidins. Harborne JB The flavonoids: advances in research since 1980. London; Chapmann and Hall 1988: 21-62
  • 3 Kuroda Y, Hara Y. Health effects of tea and its catechins. New York, Boston, Dordrecht, London, Moscow; Kluwer Academic/Plenum Publishers 2004: 11-60
  • 4 Lambert J D, Yang C S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols.  Mutat Res. 2003;  523–524 201-208
  • 5 Ahmad N, Cheng P, Mukhtar H. Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate.  Biochem Biophys Res Commun. 2000;  275 328-334
  • 6 Maeda-Yamamoto M, Kawahara H, Tahara N, Tsuji K, Hara Y, Isemura M. Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells.  J Agric Food Chem. 1999;  47 2350-2354
  • 7 Sazuka M, Imazawa H, Shoji Y, Mita T, Hara Y, Isemura M. Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins.  Biosci Biotechnol Biochem. 1997;  61 1504-1506
  • 8 Hashimoto F, Ono M, Masuoka C, Ito Y, Sakata Y, Shimizu K, Nonaka G, Nishioka I, Nohara T. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols.  Biosci Biotechnol Biochem. 2003;  67 396-401
  • 9 Kimura M, Umegaki K, Kasuya Y, Sugisawa A, Higuchi M. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans.  Eur J Clin Nutr. 2002;  56 1186-1193
  • 10 Hayashi N, Ujihara T. ‘Biting effect' stabilizing gallate-type catechin/quaternary ammonium ion complexes.  Tetrahedron. 2007;  63 9802-9809
  • 11 Tezuka M, Suzuki H, Suzuki Y, Hara Y, Okada S. Inactivation effect of tea leaf catechins on human type-A influenza virus.  Jpn J Toxicol Environ Health. 1997;  43 311-315
  • 12 Okabe S, Suganuma M, Hayashi M, Sueoka E, Komori A, Fujiki H. Mechanisms of growth inhibition of human lung cancer cell line, PC-9, by tea polyphenols.  Jpn J Cancer Res. 1997;  88 639-643
  • 13 Miura S, Watanabe J, Tomita T, Sano M, Tomita I. The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+ mediated oxidative modification of low density lipoprotein.  Biol Pharm Bull. 1994;  17 1567-1572
  • 14 Hara Y, Watanabe M. Antibacterial activity of tea polyphenols against clostridium botulinum.  Nippon Shokuhin Kogyo Gakkaishi. 1989;  36 951-955
  • 15 Martin R, Lilley T H, Falshaw C P, Haslam E, Begley M J, Magnolato D. The caffeine-potassium chlorogenate molecular complex.  Phytochemistry. 1986;  26 273-279
  • 16 Gaffney S H, Martin R, Lilley T H, Haslam E, Magnolato D. The association of polyphenols with caffeine and α- and β-cyclodextrin in aqueous media.  J Chem Soc Chem Commun. 1986;  2 107-109
  • 17 Horman I, Viani R. The nature and conformation of the caffeine-chlorogenate complex of coffee.  J Food Sci. 1972;  37 925-927
  • 18 Maruyama N, Suzuki Y, Sakata K, Yagi A, Ina K. NMR spectroscopic and computer graphics studies on the creaming down of tea. Proceedings of the International Symposium on Tea Science, Shizuoka-shi, Japan 1991: 145-149
  • 19 Cai Y, Gaffney S H, Lilley T H, Magnolato D, Martin R, Spencer C M, Haslam E. Polyphenol interactions. Part 4. Model studies with caffeine and cyclodextrins.  J Chem Soc [Perkin II]. 1990;  2197-2209
  • 20 Hayashi N, Ujihara T, Kohata K. Binding energy of tea catechin/caffeine complexes in water evaluated by titration experiments with 1H-NMR.  Biosci Biotechnol Biochem. 2004;  68 2512-2518
  • 21 Tsutsumi H, Sato T, Ishizu T. Offset π-π interaction in crystal structure of (−)-gallocatechin-3-O-gallate.  Chem Pharm Bull. 2010;  58 572-574
  • 22 Ishizu T, Tsutsumi H, Sato T, Yamamoto H, Shiro M. Crystal structure of complex of gallocatechin gallate and caffeine.  Chem Lett. 2009;  38 230-231
  • 23 Ishizu T, Tsutsumi H, Sato T. Interaction between gallocatechin gallate and caffeine in crystal structure of 1:2 and 2:2 complexes.  Tetrahedron Lett. 2009;  50 4121-4124
  • 24 Wong J W, Yuen K H. Inclusion complexation of artemisinin with α-, β-, and γ-cyclodextrins.  Drug Dev Indian Pharm. 2003;  29 1035-1044
  • 25 Ishizu T, Kajitani S, Tsutsumi H, Yamamoto H, Harano K. Diastereomeric difference of inclusion modes between (−)-epicatechin gallate, (−)-epigallocatechin gallate and (+)-gallocatechin gallate, with β-cyclodextrin in aqueous solvent.  Magn Reson Chem. 2007;  46 448-456
  • 26 Ishizu T, Hirata C, Yamamoto H, Harano K. Structure and intramolecular flexibility of β-cyclodextrin complex with (−)-epigallocatechin gallate in aqueous solvent.  Magn Reson Chem. 2006;  44 776-783
  • 27 Ishizu T, Tsutsumi H, Yamamoto H, Harano K. NMR spectroscopic characterization of inclusion complexes comprising cyclodextrins and gallated catechins in aqueous solution: cavity size dependency.  Magn Reson Chem. 2008;  47 283-287
  • 28 Giacovazzo C. Fundamentals of crystallography, 2nd edition. IUCr texts on crystallography 7. Oxford; IUCr/Oxford University Press 2002: 237-243
  • 29 Job P. Formation and stability of inorganic complexes in solution.  Ann Chem. 1928;  9 113-203
  • 30 Karplus M, Anderson DH. Valence-bond interpretation of electron-coupled nuclear spin interactions; application to methane.  J Chem Phys. 1959;  30 6-10
  • 31 WinMOPAC V3.9. Tokyo; Fujitsu Ltd 2004

Prof. Takashi Ishizu

Laboratory of Organic and Bio-organic Chemistry
Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University

Sanzo Gakuen cho 1

Fukuyama, Hiroshima 729-0292

Japan

Phone: +81 8 49 36 21 11

Fax: +81 8 49 36 20 24

Email: ishizu@fupharm.fukuyama-u.ac.jp