Zusammenfassung
Hintergrund: Radiofrequenzablation (RFA) und Elektrochemische Lyse (ECL) sind konkurrierende intrahepatische Ablationsverfahren. Wir verglichen beide Methoden in einem Perfusionsmodell ex vivo und im Tierversuch (Schwein) in vivo. Methode: Ex vivo wurden 27 frische Schlachthoflebern in ein Perfusionsmodell integriert. Sonografisch unterstützt, platzierten wir perivaskulär in 10 mm Abstand zu Portalvenen RFA- bzw. ECL-Elektroden und erzeugten insgesamt 83 Ablationsherde. In vivo wurden 10 Schweine laparotomiert und je Leber 4 Anwendungen RFA bzw. ECL perivaskulär durchgeführt. Prä- und postoperativ, an den Tagen 1, 3 und 7 wurden Entzündungs- sowie Leberwerte und Zytokine bestimmt. Nach 7 Tagen wurden die Organe entnommen und histologisch unabhängig untersucht. Ergebnisse: Bei 59 RFA-Ablationen (Anwendungszeit 12,4 min) ex vivo wurden in 29 % der Anwendungen die Zieltemperatur nicht erreicht (Abbruch). Bei 70 % der Gefäße innerhalb der Nekrosen ließen sich perivaskulär intakte Hepatozyten nachweisen. Bei 24 ECL-Ablationen war die Anwendungszeit abhängig von der applizierten Ladung in Coulomb (C) und lag zwischen 50 min (150 C) und 200 min (600 C). Die pH-Werte lagen bei 0,9 (Anode) bzw. 12,2 (Kathode). Die Nekrosen waren bei ECL in allen Fällen auch perivaskulär vollständig mit einer Destruktion bis zur Gefäßwand. In vivo betrug das mediane Gewicht der 10 Tiere 39,5 kg. Weder bei RFA noch bei ECL traten Majorkomplikationen wie Blutung, Galleleckage oder Abszess auf. Die Anwendungszeit betrug bei ECL 67 min (200 C), bei RFA 12,4 min. Bei RFA waren die perivaskulären Nekrosen in 73 % unvollständig. Bei ECL waren die Nekrosen bis zur Gefäßwand vollständig. Am 1. postoperativen Tag stiegen Monozyten, CRP und ASAT nach RFA und ECL signifikant, Leukozyten nur nach ECL, Bilirubin nur nach RFA. IL-6, TNF-α, IL-1β differierten nicht signifikant. Schlussfolgerung: RFA und ECL sind intrahepatisch sicher anwendbare Ablationsverfahren. Durch den Kühlungseffekt der Perfusion resultieren bei der thermischen Methode RFA ex vivo und in vivo perivaskulär unvollständige Nekrosen. Ein Nachteil der ECL ist die lange Anwendungszeit, ein Kostenvorteil entsteht durch die wiederverwendbaren Platinelektroden. Eine zentrale RFA bei Tumorlokalisation in Gefäßnähe ohne Limitierung der Leberperfusion muss kritisch beurteilt werden.
Abstract
Background: Radio frequency ablation (RFA) and electrochemical treatment (ECT) are competing methods of intrahepatic ablation. We compared RFA and ECT in a perfusion model and in vivo in pigs. Material and Methods: Twenty-seven fresh porcine livers were obtained from a slaughterhouse and placed ex vivo into a perfusion model. RFA or ECT electrodes were inserted under ultrasound guidance in perivascular locations at a distance of 10 mm from a portal vessel. A total of 83 areas of ablation were created. In vivo ablations were performed at perivascular sites in 10 laparotomised pigs. Four areas of ablation were created per liver using RFA or ECL. Inflammatory parameters, liver values and cytokine levels were determined before and after surgery and on days 1, 3 and 7 after surgery. On day 7, the livers were harvested and specimens were analysed histologically by independent experts. Results: In 29 % of 59 ex vivo RFA ablations, the target temperature was not reached and the procedure was discontinued. Intact hepatocytes were detected in close proximity to 70 % of the vessels within necrotic areas. In 24 ECT applications, treatment time depended on the charge delivered and ranged between 50 min at 150 coulombs (C) and 200 min at 600 C. The pH level was 0.9 at the anode and 12.2 at the cathode. ECT always led to complete perivascular necrosis and vessel wall destruction. The animals had an in vivo median weight of 39.5 kg. Neither RFA nor ECT caused major complications such as bleeding, bile leaks or abscesses. Treatment time was 67 min (200 C) for ECT and 12.4 min for RFA. In 73 % of the cases, RFA led to incomplete perivascular areas of necrosis. ECT induced complete perivascular necrosis and vessel wall destruction. On day 1 after surgery, both ECT and RFA were associated with a significant increase in monocyte, C-reactive protein and aspartate aminotransferase levels. Leukocyte counts were elevated only after ECT, bilirubin levels only after RFA. There were no significant differences in interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and IL-1β. Conclusion: Both RFA and ECL are safe methods of intrahepatic ablation. As a result of a heat sink effect of blood flow in nearby vessels, RFA leads to incomplete necrosis in perivascular sites both ex vivo and in vivo. ECT has the disadvantage of long treatment times but the advantage of lower costs since the platinum electrodes are reusable. Without a reduction in liver perfusion, the central application of RFA in close proximity to vessels should be considered problematic.
Schlüsselwörter
Elektrochemische Lyse - Radiofrequenzablation - Leber - Perfusionsmodell
Key words
electrochemical treatment - radio frequency ablation - liver - perfusion model
Literatur
1
Curley S A, Izzo F, Delrio P et al.
Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies – results in 123 patients.
Ann Surg.
1999;
230
1-8
2
Bläker H, Hofmann W J, Theuer D et al.
Pathohistological findings in liver metastases.
Radiologe.
2001;
41
1-7
3
Lehnert T, Golling M.
Indications and outcome of liver metastases resection.
Radiologe.
2001;
41
40-48
4
Rentsch M, Winter H, Bruns C J et al.
Cyberknife®-Chirurgie mit dem Strahlenmesser: eine neue Behandlungsalternative für Patienten mit inoperablen Metastasen.
Zentralbl Chir.
2010;
135
175-180
Epub 25.3.2010
5
Auernhammer C J, Jauch K W, Hoffmann J N.
Lebermetastasierung bei neuroendokrinen Karzinomen des gastro-entero-pankreatischen Systems – Therapiestrategien.
Zentralbl Chir.
2009;
134
410-417
Epub 15.9.2009
6
Mulier S, Ni Y, Jamart J et al.
Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors.
Ann Surg.
2005;
242
158-171
7
Ayav A, Germain A, Marchal F et al.
Radiofrequency ablation of unresectable liver tumors: factors associated with incomplete ablation or local recurrence.
Am J Surg.
2010;
200
435-439
8
Poon R T, Ng K K, Lam C M et al.
Effectiveness of radiofrequency ablation for hepatocellular carcinomas larger than 3 cm in diameter.
Arch Surg.
2004;
139
281-287
9
Hori T, Nagata K, Hasuike S et al.
Risk factors or the local recurrence of hepatocellular carcinoma after a single session of percutaneous radiofrequency ablation.
J Gastroenterol.
2003;
38
977-981
10
Liang H H, Peng Z W, Chen M S et al.
Efficacy of combining temperature- and power-controlled radiofrequency ablation for malignant liver tumors.
Chin J Cancer.
2010;
29
408-412
11 Nordenström B. Biologically Closed Electrical Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System.. Stockholm: Nordic Medical Publications; 1983
12
Nordenström B.
Survey of Mechanisms in Electrochemical Treatment (ECT) of Cancer.
Eur J Surg Suppl.
1994;
574
93-109
13
Xin Y.
Organization and spread of electrochemical therapy (EChT) in China.
Eur J Surg Suppl.
1994;
574
25-29
14 Xin Y. The clinical advance in application of EChT within the past ten years. Preprints from the 2nd International Symposium on electrochemical treatment of Cancer; Beijing, 27–30 Sept. 1998 81-92
15
Fosh B G, Finch J G, Lea M et al.
Use of electrolysis as an adjunct to liver resection.
Br J Surg.
2002;
89
999-1002
16
Nilsson E, von Euler H, Berendson J et al.
Electrochemical treatment of tumours.
Bioelectrochemistry.
2000;
51
1-11
17
Vogl T J, Mayer H P, Zangos S et al.
Prostate Cancer: MR Imaging-guided Galvanotherapy – Technical Development and First Clinical results.
Radiology.
2007;
245
895-902
18
Hinz S, Egberts J H, Pauser U et al.
Electrolytic ablation is as effective as radiofrequency ablation in the treatment of artificial liver metastases in a pig model.
J Surg Oncol.
2008;
98
135-138
19
Rühl R, Lüdemann L, Czarnecka A et al.
Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases.
Radiation Oncology.
2010;
5
44
20
Lee E W, Loh C T, Kee S T.
Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation.
Technol Cancer Res Treat.
2007;
6
287-293
21
Lubienski A.
Radiofrequency ablation in metastatic disease.
Recent Results Cancer Res.
2005;
165
268-276
22
Pennes H H.
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol.
1948;
1
93-122
23
Goldberg S N, Hahn P F, Tanabe K K et al.
Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis?.
J Vasc Interv Radiol.
1998;
9
101-111
24
Horigome H, Nomura T, Nakao H et al.
Half-deployed method: percutaneous radiofrequency ablation therapy using clustered electrodes for malignant liver tumors proximal to large vessels.
Am J Roentgenol.
2001;
177
948 ff
25
Lu D S, Raman S S, Vodopich D J et al.
Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect.
Am J Roentgenol.
2002;
178
47-51
26
Goldberg S N, Charboneau J W, Dodd 3rd G D International Working Group on Image-Guided Tumor Ablation et al.,.
Image-guided tumor ablation: proposal for standardization of terms and reporting criteria.
Radiology.
2003;
228
335-345
27
Mulier S, Ni Y, Frich L et al.
Experimental and clinical radiofrequency ablation: proposal for standardized description of coagulation size and geometry.
Ann Surg Oncol.
2007;
14
1381-1396
28
Li K, Xin Y, Gu Y et al.
Effects of direct current on dog liver: possible mechanisms for tumour electrochemical treatment.
Bioelectromagnetics.
1997;
18
2-7
29
von Euler H, Strahle K, Thörne A et al.
Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT).
Bioelectrochemistry.
2004;
62
57-65
30
Samuelsson L, Olin T, Berg N.
Electrolytic destruction of lung tissue in the rabbit.
Acta Radiol Diagnosis.
1980;
21
447-454
31
Miklavcic D, Sersa G, Kryzanowski M et al.
Tumour treatment by direct electric current: tumour temperature and pH, electrode material and configuration.
Bioelectrochem Bioenerg.
1993;
30
209-220
32
Smith R D, Eisner D A, Wray S.
The effects of changing intracellular pH on calcium and potassium currents in smooth muscle cells from the guinea-pig ureter.
Pflugers Arch.
1998;
435
518-522
33
Wemyss-Holden S A, Robertson G S, Dennison A R et al.
A new treatment for unresectable liver tumours: long-term studies of electrolytic lesions in the pig liver.
Clin Sci.
2000;
98
561-567
34
Wemyss-Holden S A, Hall P, Robertson G S et al.
The safety of electrolytically induced hepatic necrosis in a pig model.
Aust NZ J Surg.
2000;
70
607-612
35
Lehner F, Ramackers W, Bektas H et al.
Leberresektion bei nicht kolorektalen, nicht neuroendokrinen Lebermetastasen – ist die Resektion im Rahmen des onko-chirurgischen Therapiekonzeptes gerechtfertigt?.
Zentralbl Chir.
2009;
134
430-436
Epub 15.9.2009
36
Skalický T, Třeška V, Sutnar A et al.
Wann sollte man benigne Lebertumoren chirurgisch behandeln?.
Zentralbl Chir.
2009;
134
141-144
Epub 20.4.2009
37
Heise M, Jandt K, Rauchfuss F et al.
Management von Komplikationen nach Leberresektionen.
Zentralbl Chir.
2010;
135
112-120
Epub 8.4.2010
38
Vyslouˇil K, Klementa I, Starý L et al.
Radiofrequenzablation von kolorektalen Lebermetastasen.
Zentralbl Chir.
2009;
134
145-148
Epub 20.4.2009
39
de Baere T, Risse O, Kuoch V et al.
Adverse events during radiofrequency treatment of 582 hepatic tumors.
Am J Roentgenol.
2003;
181
695-700
40
Poon R T, Ng K K, Lam C M et al.
Learning curve for radiofrequency ablation of liver tumors: prospective analysis of initial 100 patients in a tertiary institution.
Ann Surg.
2004;
239
441-449
41
Jiao L R, Hansen P D, Havlik R et al.
Clinical short-term results of radiofrequency ablation in primary and secondary liver tumours.
Am J Surg.
1999;
177
303-306
42
Samuelsson L, Jönsson L, Lamm I L et al.
Electrolysis with different electrode materials and combined with irradiation for treatment of experimental rat tumours.
Acta Radiol.
1990;
32
178-181
43
Wemyss-Holden S A, Robertson G SM, Dennison A R et al.
Electrochemical lesions in the rat liver support its potential for treatment of liver tumours.
J Surg Res.
2000;
93
55-62
44
Wemyss-Holden S A, Dennison A R, Hall P et al.
Electrolytic ablation as an adjunct to liver resection: experimental studies of predictability and safety.
Br J Surg.
2002;
89
579-585
PD Dr. R. Czymek
UK-SH Campus Lübeck · Klinik für Chirurgie
Ratzeburger Allee 160
23538 Lübeck
Deutschland
Phone: 00 49 / 4 51 / 5 00 20 46
Fax: 00 49 / 4 51 / 5 00 63 53
Email: ralf_czymek@web.de