RSS-Feed abonnieren
DOI: 10.1055/s-0031-1271742
© Georg Thieme Verlag KG Stuttgart · New York
PIBF – Progesteron induzierter Blockierfaktor
PIBF – Progesterone-Induced Blocking FactorPublikationsverlauf
eingereicht 22.07.2010
angenommen nach Überarbeitung 28.12.2010
Publikationsdatum:
13. Juli 2011 (online)
Zusammenfassung
Die Schwangerschaft ist die Symbiose zweier allogener Organismen, die keine gegenseitige immunologische Abstoßungsreaktion hervorrufen, obwohl zahlreiche Zell-zu-Zell-Kontakte zwischen beiden Individuen bestehen. Direkte Grenzflächen zwischen mütterlichen und fetalen Zellen bilden vor allem die Synzytiotrophoblastzellen der Zotten, die extravillösen Zytotrophoblastzellen in der Decidua, die Trophoblastzellen, die das Endothel der mütterlichen decidualen Arteriolen ersetzen, sowie Trophoblastpartikel in der mütterlichen Zirkulation. An allen Stellen ist ein intaktes Immunsystem der Mutter präsent, das jedoch eine Toleranz entwickelt und die fetalen Zellen nicht angreift. Zahlreiche Faktoren, die zu dieser spezifischen Immuntoleranz der Mutter gegenüber dem Fetus beitragen, sind inzwischen bekannt. Einer dieser Faktoren ist der Progesteron-induzierte Blockierfaktor (PIBF). PIBF wurde ursprünglich als ein 34 kDa großes Protein entdeckt, welches unter dem Einfluss von Progesteron von Lymphozyten gesunder Schwangerer freigesetzt wird. PIBF besitzt immunmodulierende Effekte in vivo und in vitro, die für die mütterliche Immuntoleranz und somit zum Erhalt der Schwangerschaft von Bedeutung sind. Mittlerweile wurden auch verschiedene Tumoren entdeckt, die PIBF produzieren und sich dadurch einer Immunantwort entziehen. In diesen Fällen hat PIBF Potenzial als neuer Biomarker für die Tumorprogression oder als Grundlage für neue Behandlungsstrategien.
Abstract
Pregnancy is a unique immunological situation in which 2 allogeneic organisms live in intimate symbiosis without developing rejection reactions. At different locations, interfaces exist between mother and foetus with direct contact between both individuals: 1) maternal blood surrounds foetal villi, which are covered with syncitiotrophoblast cells; 2) cytotrophoblast cells invade the decidua, in which they touch tissue lymphocytes; 3) trophoblast cells, which substitute endothelium of maternal arterioles filled with maternal blood; and 4) trophoblast particles, which are expressed from syncytiotrophoblast and circulate within the maternal blood until they settle in the lung capillaries, where they become degraded by alveolar macrophages. Several factors are known which support the specific immunotolerance of the mother to her foetus and are focussed by current research in reproductive immunology. One of these factors is progesterone-induced blocking factor (PIBF). Originally, it was discovered as a 34 kDa protein, which is released from lymphocytes of healthy pregnant women under the influence of progesterone. PIBF has immunomodulatory functions in vivo and in vitro, which are important for the establishment of immunotolerance between mother and foetus and, thereby, for the regular course of pregnancy. Finally, during the last years, several tumours have been identified to produce PIBF, which supports their immune escape and which may have the potential to become a novel tumour biomarker and which may lead to the development of new therapeutic strategies.
Schlüsselwörter
Schwangerschaft - Placenta - Immuntoleranz - Lymphozyten - Progesteron
Key words
pregnancy - placenta - immunotolerance - lymphocytes - progesterone
Literatur
- 1 Szekeres-Bartho J, Kilar F, Falkay G. et al . The mechanism of the inhibitory effect of progesterone on lymphocyte cytotoxicity: I. Progesterone-treated lymphocytes release a substance inhibiting cytotoxicity and prostaglandin synthesis. Am J Reprod Immunol Microbiol. 1985; 9 15-18
- 2 Szekeres-Bartho J, Par G, Dombay G. et al . The antiabortive effect of progesterone-induced blocking factor in mice is manifested by modulating NK activity. Cell Immunol. 1997; 177 194-199
- 3 Szekeres-Bartho J, Wegmann TG. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol. 1996; 31 81-95
- 4 Druckmann R, Druckmann MA. Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol. 2005; 97 389-396
- 5 Hudic I, Fatusic Z, Szekeres-Bartho J. et al . Progesterone-induced blocking factor and cytokine profile in women with threatened pre-term delivery. Am J Reprod Immunol. 2009; 61 330-337
- 6 Kalinka J, Szekeres-Bartho J. The impact of dydrogesterone supplementation on hormonal profile and progesterone-induced blocking factor concentrations in women with threatened abortion. Am J Reprod Immunol. 2005; 53 166-171
- 7 Szekeres-Bartho J, Barakonyi A, Par G. et al . Progesterone as an immunomodulatory molecule. Int Immunopharmacol. 2001; 1 1037-1048
- 8 Poehlmann TG, Schaumann A, Busch S. et al . Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol. 2006; 56 275-285
- 9 Faust Z, Laskarin G, Rukavina D. et al . Progesterone-induced blocking factor inhibits degranulation of natural killer cells. Am J Reprod Immunol. 1999; 42 71-75
- 10 Laskarin G, Tokmadzic VS, Strbo N. et al . Progesterone induced blocking factor (PIBF) mediates progesterone induced suppression of decidual lymphocyte cytotoxicity. Am J Reprod Immunol. 2002; 48 201-209
- 11 Szereday L, Varga P, Szekeres-Bartho J. Cytokine production by lymphocytes in pregnancy. Am J Reprod Immunol. 1997; 38 418-422
- 12 Par G, Geli J, Kozma N. et al . Progesterone regulates IL12 expression in pregnancy lymphocytes by inhibiting phospholipase A2. Am J Reprod Immunol. 2003; 49 1-5
- 13 Wegmann TG, Lin H, Guilbert L. et al . Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?. Immunol Today. 1993; 14 353-356
- 14 Chaouat G, Menu E, Mognetti B. et al . Immunopathology of early pregnancy. Infect Dis Obstet Gynecol. 1997; 5 73-92
- 15 Raghupathy R, Al-Mutawa E, Al-Azemi M. et al . Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. J Reprod Immunol. 2009; 80 91-99
- 16 Szekeres-Bartho J, Par G, Szereday L. et al . Progesterone and non-specific immunologic mechanisms in pregnancy. Am J Reprod Immunol. 1997; 38 176-182
- 17 Szekeres-Bartho J, Faust Z, Varga P. The expression of a progesterone-induced immunomodulatory protein in pregnancy lymphocytes. Am J Reprod Immunol. 1995; 34 342-348
- 18 Bose PD, Das BC, Kumar A. et al . High viral load and deregulation of Progesterone receptor signaling pathway: Association with Hepatitis E related poor pregnancy outcome. J Hepatol.
- 19 Kozma N, Halasz M, Polgar B. et al . Progesterone-induced blocking factor activates STAT6 via binding to a novel IL-4 receptor. J Immunol. 2006; 176 819-826
- 20 Szekeres-Bartho J, Balasch J. Progestagen therapy for recurrent miscarriage. Hum Reprod Update. 2008; 14 27-35
- 21 Saito S, Nakashima A, Myojo-Higuma S. et al . The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol. 2008; 77 14-22
- 22 Raghupathy R, Al Mutawa E, Makhseed M. et al . Redirection of cytokine production by lymphocytes from women with pre-term delivery by dydrogesterone. Am J Reprod Immunol. 2007; 58 31-38
- 23 Joachim R, Zenclussen AC, Polgar B. et al . The progesterone derivative dydrogesterone abrogates murine stress-triggered abortion by inducing a Th2 biased local immune response. Steroids. 2003; 68 931-940
- 24 Luchetti CG, Miko E, Szekeres-Bartho J. et al . Dehydroepiandrosterone and metformin modulate progesterone-induced blocking factor (PIBF), cyclooxygenase 2 (COX2) and cytokines in early pregnant mice. J Steroid Biochem Mol Biol. 2008; 111 200-207
- 25 Polgar B, Kispal G, Lachmann M. et al . Molecular cloning and immunologic characterization of a novel cDNA coding for progesterone-induced blocking factor. J Immunol. 2003; 171 5956-5963
- 26 Lachmann M, Gelbmann D, Kalman E. et al . PIBF (progesterone induced blocking factor) is overexpressed in highly proliferating cells and associated with the centrosome. Int J Cancer. 2004; 112 51-60
- 27 Anderle C, Hammer A, Polgar B. et al . Human trophoblast cells express the immunomodulator progesterone-induced blocking factor. J Reprod Immunol. 2008; 79 26-36
- 28 Polgar B, Nagy E, Miko E. et al . Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol Reprod. 2004; 71 1699-1705
- 29 Larramendy ML, Lushnikova T, Bjorkqvist AM. et al . Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Cancer Genet Cytogenet. 2000; 119 132-138
- 30 Kainu T, Juo SH, Desper R. et al . Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci U S A. 2000; 97 9603-9608
- 31 Dong JT, Chen C, Stultz BG. et al . Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res. 2000; 60 3880-3883
- 32 Gray SG, Kytola S, Matsunaga T. et al . Comparative genomic hybridization reveals population-based genetic alterations in hepatoblastomas. Br J Cancer. 2000; 83 1020-1025
- 33 Rozenblum E, Vahteristo P, Sandberg T. et al . A genomic map of a 6-Mb region at 13q21-q22 implicated in cancer development: identification and characterization of candidate genes. Hum Genet. 2002; 110 111-121
- 34 Ng D, Toure O, Wei MH. et al . Identification of a novel chromosome region, 13q21.33-q22.2, for susceptibility genes in familial chronic lymphocytic leukemia. Blood. 2007; 109 916-925
- 35 Xu X, Weaver Z, Linke SP. et al . Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999; 3 389-395
- 36 Fukasawa K, Choi T, Kuriyama R. et al . Abnormal centrosome amplification in the absence of p53. Science. 1996; 271 1744-1747
- 37 Barakonyi A, Polgar B, Szekeres-Bartho J. The role of gamma/delta T-cell receptor-positive cells in pregnancy: part II. Am J Reprod Immunol. 1999; 42 83-87
- 38 Szekeres-Bartho J, Polgar B. PIBF: the double edged sword. Pregnancy and tumor. Am J Reprod Immunol. 2010; 64 77-86
- 39 Srivastava MD, Thomas A, Srivastava BI. et al . Expression and modulation of progesterone induced blocking factor (PIBF) and innate immune factors in human leukemia cell lines by progesterone and mifepristone. Leuk Lymphoma. 2007; 48 1610-1617
- 40 Tariverdian N, Rucke M, Szekeres-Bartho J. et al . Neuroendocrine circuitry and endometriosis: progesterone derivative dampens corticotropin-releasing hormone-induced inflammation by peritoneal cells in vitro. J Mol Med. 2009; 88 267-278
Korrespondenzadresse
Prof. Dr. med. habil. Udo R. Markert
Placenta-Labor
Abt. für Geburtshilfe
Klinik für Frauenheilkunde und
Geburtshilfe
Universitätsklinikum Jena
D-07740 Jena
Telefon: +49/3641/933 763
Fax: +49/3641/933 764
eMail: markert@med.uni-jena.de