Horm Metab Res 2011; 43(5): 312-318
DOI: 10.1055/s-0031-1271746
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Elevated Retinol Binding Protein 4 Contributes to Insulin Resistance in Spontaneously Hypertensive Rats

H.-Y. Ou1 , 2 , H.-T. Wu3 , Y.-C. Yang4 , J.-S. Wu4 , J.-T. Cheng5 , 6 , [*] , C.-J. Chang4 , [*]
  • 1Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
  • 2Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
  • 3Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
  • 4Department of Family Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
  • 5Department of Medical Research, Chi-Mei Medical Center, Yong Kang City, Tainan, Taiwan
  • 6Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan, Taiwan
Weitere Informationen

Publikationsverlauf

received 30.10.2010

accepted 19.01.2011

Publikationsdatum:
01. März 2011 (online)

Abstract

Retinol binding protein 4 (RBP4) is an adipokine secreted by adipose tissue and liver and contributes to insulin resistance (IR) in animals. Although several human studies indicated that RBP4 is positively correlated with blood pressure and is elevated in untreated hypertensive subjects, the role of RBP4 in IR of hypertensive animals still remains obscure. In this study, spontaneously hypertensive rats (SHR) were used to investigate the relationship between RBP4 levels and IR. We found that at 7 weeks old, SHR had significantly increased plasma RBP4 levels and RBP4 expression in liver and epididymal adipose tissue accompanied by worsening of IR as compared with Wistar-Kyoto (WKY) control rats. Administration of fenretinide in SHR to increase urinary RBP4 excretion significantly decreased plasma RBP4 levels and improved IR. Moreover, treatment with valsartan markedly reduced blood pressure, circulating RBP4 and adiponectin levels, and IR in SHR. Valsartan also reversed the increase of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and the decrease of type 4 glucose transporter (GLUT4) in adipose tissue. In conclusion, these results suggest that RBP4 contributes, at least partly, to the pathogenesis of IR in SHR. Furthermore, the decrease of blood pressure caused by valsartan not only decreased RBP4 levels, but also improved IR in SHR.

References

  • 1 Gu Q, Dillon CF, Burt VL, Gillum RF. Association of hypertension treatment and control with all-cause and cardiovascular disease mortality among US adults with hypertension.  Am J Hypertens. 2009;  23 38-45
  • 2 Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis.  Am J Med. 2006;  119 812-819
  • 3 Zavaroni I, Mazza S, Dall’Aglio E, Gasparini P, Passeri M, Reaven GM. Prevalence of hyperinsulinaemia in patients with high blood pressure.  J Intern Med. 1992;  231 235-240
  • 4 Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity.  Metabolism. 1990;  39 167-174
  • 5 Skarfors ET, Lithell HO, Selinus I. Risk factors for the development of hypertension: a 10-year longitudinal study in middle-aged men.  J Hypertens. 1991;  9 217-223
  • 6 Blaner WS. Retinol-binding protein: the serum transport protein for vitamin A.  Endocr Rev. 1989;  10 308-316
  • 7 van Dam RM, Hu FB. Lipocalins and insulin resistance: etiological role of retinol-binding protein 4 and lipocalin-2?.  Clin Chem. 2007;  53 5-7
  • 8 Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH, Lee HK, Park KS. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes.  Diabetes Care. 2006;  29 2457-2461
  • 9 Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.  N Engl J Med. 2006;  354 2552-2563
  • 10 Jia W, Wu H, Bao Y, Wang C, Lu J, Zhu J, Xiang K. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes.  J Clin Endocrinol Metab. 2007;  92 3224-3229
  • 11 Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients.  J Clin Endocrinol Metab. 2007;  92 2712-2719
  • 12 Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Schleicher E, Fritsche A, Haring HU. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans.  Diabetes Care. 2007;  30 1173-1178
  • 13 Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 356-362
  • 14 Ost A, Danielsson A, Liden M, Eriksson U, Nystrom FH, Stralfors P. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes.  FASEB J. 2007;  21 3696-3704
  • 15 Raila J, Henze A, Spranger J, Mohlig M, Pfeiffer AF, Schweigert FJ. Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients.  Kidney Int. 2007;  72 505-511
  • 16 Lee DC, Lee JW, Im JA. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents.  Metabolism. 2007;  56 327-331
  • 17 Solini A, Santini E, Madec S, Rossi C, Muscelli E. Retinol-binding protein-4 in women with untreated essential hypertension.  Am J Hypertens. 2009;  22 1001-1006
  • 18 Reaven GM, Chang H. Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats.  Am J Hypertens. 1991;  4 34-38
  • 19 Swislocki AL, Goodman MN, Khuu DT, Fann KY. Insulin resistance and hypertension: in vivo and in vitro insulin action in skeletal muscle in spontaneously hypertensive and Wistar-Kyoto rats.  Am J Hypertens. 1997;  10 1159-1164
  • 20 Reaven GM, Chang H, Hoffman BB, Azhar S. Resistance to insulin-stimulated glucose uptake in adipocytes isolated from spontaneously hypertensive rats.  Diabetes. 1989;  38 1155-1160
  • 21 Mondon CE, Reaven GM. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension.  Metabolism. 1988;  37 303-305
  • 22 Reaven GM, Chang H. Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats.  Am J Hypertens. 1991;  4 34-38
  • 23 Labat C, Lacolley P, Lajemi M, de Gasparo M, Safar ME, Benetos A. Effects of valsartan on mechanical properties of the carotid artery in spontaneously hypertensive rats under high-salt diet.  Hypertension. 2001;  38 439-443
  • 24 Schaffer EM, Ritter SJ, Smith JE. N-(4-hydroxyphenyl)retinamide (fenretinide) induces retinol-binding protein secretion from liver and accumulation in the kidneys in rats.  J Nutr. 1993;  123 1497-1503
  • 25 Zemancikova A, Torok J. Effect of chronic nifedipine treatment on blood pressure and adrenergic responses of isolated mesenteric artery in young rats with developing spontaneous hypertension.  Physiol Res. 2009;  58 921-925
  • 26 Berni R, Formelli F. In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences.  FEBS Lett. 1992;  308 43-45
  • 27 Swislocki A, Tsuzuki A. Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat.  Am J Med Sci. 1993;  306 282-286
  • 28 Rao RH. Insulin resistance in spontaneously hypertensive rats. Difference in interpretation based on insulin infusion rate or on plasma insulin in glucose clamp studies.  Diabetes. 1993;  42 1364-1371
  • 29 Bader S, Scholz R, Kellerer M, Tippmer S, Rett K, Mathaei S, Freund P, Haring HU. Normal insulin receptor tyrosine kinase activity and glucose transporter (GLUT 4) levels in the skeletal muscle of hyperinsulinaemic hypertensive rats.  Diabetologia. 1992;  35 712-718
  • 30 Kahn CR, Saad MJ. Alterations in insulin receptor and substrate phosphorylation in hypertensive rats.  J Am Soc Nephrol. 1992;  3 S69-S77
  • 31 Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A. Clinical trials with retinoids for breast cancer chemoprevention.  Endocr Relat Cancer. 2006;  13 51-68
  • 32 Camerini T, Mariani L, De Palo G, Marubini E, Di Mauro MG, Decensi A, Costa A, Veronesi U. Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer.  J Clin Oncol. 2001;  19 1664-1670
  • 33 Harris G, Ghazallah RA, Nascene D, Wuertz B, Ondrey FG. PPAR activation and decreased proliferation in oral carcinoma cells with 4-HPR.  Otolaryngol Head Neck Surg. 2005;  133 695-701
  • 34 Potenza MA, Marasciulo FL, Tarquinio M, Quon MJ, Montagnani M. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.  Diabetes. 2006;  55 3594-3603
  • 35 Preitner F, Mody N, Graham TE, Peroni OD, Kahn BB. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis.  Am J Physiol Endocrinol Metab. 2009;  297 E1420-E1429
  • 36 Chan P, Wong KL, Liu IM, Tzeng TF, Yang TL, Cheng JT. Antihyperglycemic action of angiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats.  J Hypertens. 2003;  21 761-769
  • 37 Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Boger RH. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension.  Metabolism. 2006;  55 1159-1164
  • 38 Tomono Y, Iwai M, Inaba S, Mogi M, Horiuchi M. Blockade of AT1 receptor improves adipocyte differentiation in atherosclerotic and diabetic models.  Am J Hypertens. 2008;  21 206-212
  • 39 Erbe DV, Gartrell K, Zhang YL, Suri V, Kirincich SJ, Will S, Perreault M, Wang S, Tobin JF. Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists.  Vascul Pharmacol. 2006;  45 154-162
  • 40 Lee JM, Kim JH, Son HS, Hong EG, Yu JM, Han KA, Min KW, Chang SA. Valsartan increases circulating adiponectin levels without changing HOMA-IR in patients with type 2 diabetes mellitus and hypertension.  J Int Med Res. 2010;  38 234-241
  • 41 Makita S, Abiko A, Naganuma Y, Moriai Y, Nakamura M. Potential effects of angiotensin II receptor blockers on glucose tolerance and adiponectin levels in hypertensive patients.  Cardiovasc Drugs Ther. 2007;  21 317-318
  • 42 Ozaki N, Nomura Y, Sobajima H, Kondo K, Oiso Y. Comparison of the effects of three angiotensin II receptor type 1 blockers on metabolic parameters in hypertensive patients with type 2 diabetes mellitus.  Eur J Intern Med. 2010;  21 236-239
  • 43 Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice.  Hypertension. 2010;  55 715-721
  • 44 Younis F, Stern N, Limor R, Oron Y, Zangen S, Rosenthal T. Telmisartan ameliorates hyperglycemia and metabolic profile in nonobese Cohen-Rosenthal diabetic hypertensive rats via peroxisome proliferator activator receptor-gamma activation.  Metabolism. 2010;  59 1200-1209
  • 45 Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system.  J Hypertens. 2004;  22 2253-2261
  • 46 Pscherer S, Heemann U, Frank H. Effect of Renin-Angiotensin system blockade on insulin resistance and inflammatory parameters in patients with impaired glucose tolerance.  Diabetes Care. 2010;  33 914-919

1 These two authors contributed equally to the work.

Correspondence

C.-J. ChangMD 

Department of Family Medicine

National Cheng Kung University

Hospital

138, Sheng Li Road

Tainan 70403

Taiwan

Telefon: +886/6/235 3535 Ext: 5210

Fax: +886/6/275 4243

eMail: em75210@email.ncku.edu.tw