Subscribe to RSS
DOI: 10.1055/s-0031-1273231
© Georg Thieme Verlag KG Stuttgart · New York
Neuropsychopharmaka verändern den intrazellulären pH-Wert von zentralen Neuronen
Neuropsychopharmaca Influence the Intracellular pH Value of Central NeuronsPublication History
Publication Date:
19 May 2011 (online)
Zusammenfassung
Ähnlich wie die Elektrolyt-Homöostase ist auch der intrazelluläre pH-Wert (pHi) von Neuronen besonders intensiv kontrolliert. Dieses geschieht beispielsweise durch spezielle membranständige Systeme, die Säureäquivalente in die Zelle hinein und wieder heraus transportieren können. Die Regulation des pHi dient unter anderem der Steuerung der neuronalen Erregbarkeit, da eine Erregbarkeitssteigerung in den meisten Neuronen den pHi senkt und vice versa eine intrazelluläre Azidose im Sinne einer negativen Rückkopplungs-Schleife die Erregbarkeit wieder senkt. Änderungen des pHi haben darüber hinaus Einflüsse auf beinahe jede Zellfunktion. Da über die Wirkung von Neuropsychopharmaka auf die H + -Homöostase wenig bekannt ist, untersuchten wir diesbezüglich mehrere Antipsychotika, Antidepressiva, Antikonvulsiva und Lithium. Als Modell wurden hippocampale CA 3-Neurone in Gewebeschnitten (vom Meerschweinchen) eingesetzt, die mit dem intrazellulären pHi-Indikator BCECF gefärbt worden waren. In therapeutischen und supratherapeutischen Konzentrationen veränderten alle gemessenen Antipsychotika, die meisten Antidepressiva und gut die Hälfte aller untersuchten Antikonvulsiva reversibel den pHi dieser Neurone. Obwohl diesbezüglich noch bestätigende In-vivo-Experimente fehlen, möchten wir auf die mögliche pHi-Aktivität von Neuropsychopharmaka aufmerksam machen, insbesondere, wenn deren therapeutische oder toxische Wirkungen diskutiert werden.
Abstract
The intracellular pH (pHi) of neurons is tightly regulated, mainly by membrane-bound transporters acting as acid extruders or acid loaders. Regulation of pHi helps to control neuronal excitability, as increased bioelectric activity moderately lowers pHi and, in the sense of a negative feedback loop, intracellular acidosis mostly reduces neuronal excitability. Moreover, a change of pHi widely influences complex cellular functions. With respect to neuropsychopharmaca, little is known about whether or not they may affect neuronal H + -homeostasis. To this aim, we tested several antipsychotics, antidepressants, anticonvulsants, and lithium for effects on neuronal pHi, using guinea pig hippocampal slice preparations in which CA 3 pyramidal neurons were loaded with the pHi-sensitive dye BCECF-AM. All antipsychotics, most antidepressants and about half of the anticonvulsants tested so far elicited reversible changes of neuronal pHi when applied at therapeutic and supratherapeutic concentrations. Although these results await confirmatory in vivo experiments, we believe that the pHi activity of neuropsychopharmaca needs further attention, especially when therapeutic mechanisms or even harmful side effects are discussed.
Schlüsselwörter
intrazellulärer pH - Neuropsychopharmaka - pH-Regulation
Keywords
intracellular pH - neuropsychopharmaca - pH regulation
Literatur
-
1 Brunton L L, Lazo J S, Parker K L (Eds).. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11e. The McGraw-Hill Companies. , online version 2010.
- 2 Benkert O, Hippius H. Psychiatrische Pharmakotherapie. 7. Auflage Heidelberg: Springer Verlag; 2009
- 3 Bonnet U, Wiemann M. Intracellular free protons: relevance for neuropsychopharmacology?. Pharmacopsychiatry. 1999; 32 173
- 4 Tombaugh G C. Mild acidosis delays hypoxic spreading depression and improves neuronal recovery in hippocampal slices. J Neurosci. 1994; 14 5635-5643
- 5 Wang J W, Richardson S R, Thayer S A. Intracellular acidification is not a prerequisite for glutamate-triggered death of cultured hippocampal neurons. Neurosci Lett. 1995; 186 139-144
- 6 Tombaugh G C, Sapolsky R M. Evolving concepts about the role of acidosis in ischemic neuropathology. J Neurochem. 1993; 61 793-803
- 7 Vornov J, Thomas A G, Jo D. Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange during recovery from metabolic inhibition in neuronal tissue culture. J Neurochem. 1996; 67 2379-2389
- 8 Saybasili H. The protective role of mild acidic pH shifts on synaptic NMDA current in hippocampal slices. Brain Res. 1998; 786 128-132
- 9 Siesjö B K. Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. In: Kogure K, Hossman K A, Siesjö B K, (Eds) Progress in Brain Research 63. Amsterdam: Elsevier; 1985: 121-154
- 10 Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992; 15 396-402
- 11 Trapp S, Lückermann M, Brooks P A et al. Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity. J Physiol. 1996; 496 695-710
- 12 Bonnet U, Wiemann M, Bingmann D. CO2 /HCO3–withdrawal from the bath medium of hippocampal slices: biphasic effect on intracellular pH and bioelectric activity of CA 3-neurons. Brain Res. 1998; 796 161-170
- 13 Xiong Z Q, Saggau P, Stringer J L. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci. 2000; 20 1290-1296
- 14 Leniger T, Thöne J, Bonnet U et al. Levetiracetam inhibits Na+ -dependent Cl–/HCO3 – -exchange of adult hippocampal CA 3 neurones from guinea-pigs. Br J Pharmacol. 2004; 142 1073-1080
- 15 Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol. 1994; 42 489-537
- 16 Bonnet U, Bingmann D. GABAA-responses of CA 3 neurones: contribution of bicarbonate and of Cl–-extrusion mechanisms. NeuroReport. 1995; 6 700-704
- 17 Hartley Z, Dubinsky J M. Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci. 1993; 13 4690-4699
- 18 Amato A, Ballerini C, Attwell D. Intracellular pH changes produced by glutamate uptake in rat hippocampal slices. J Neurophysiol. 1994; 72 1686-1696
- 19 Trudeau L -E, Parpura V, Haydon P G. Activation of neurotransmitter release in hippocampal nerve terminals during recovery from intracellular acidification. J Neurophysiol. 1999; 81 2627-2635
- 20 Cannizzaro C, Monastero R, Vacca M et al. [3 H]-DA release evoked by low pH medium and internal H+ accumulation in rat hypothalamic synaptosomes: involvement of calcium ions. Neurochem Int. 2003; 43 9-17
- 21 Toll L, Howard B D. Role of Mg2+-ATPase and pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry. 1978; 17 2517-2523
- 22 Moriyama Y, Futai M. H+-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun. 1990; 173 443-448
- 23 Traynelis S F, Cull-Candy S G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 1990; 345 347-350
- 24 Chesler M. Regulation and modulation of pH in the brain. Physiol Rev. 2003; 83 1183-1221
- 25 Stella N, Pellerin L, Magistretti P J. Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. J Neurosci. 1995; 15 3307-3317
- 26 Vignes M, Blanc E, Guiramand J et al. A modulation of glutamate-induced phosphoinositide breakdown by intracellular pH changes. Neuropharmacology. 1996; 45 1595-1604
- 27 Schwiening C J, Thomas R C. pH consequences of calcium-regulation. In: Kaila K, Ransom B R, (Eds.) pH and brain function,. New York: Wiley-Liss; 1998: 373-393
- 28 Takahashi K I, Copenhagen D R. Modulation of neuronal function by intracellular pH. Neurosci Res. 1996; 24 109-116
- 29 MacVicar B, Jahnsen H. Uncoupling of CA 3 pyramidal neurons by propionate. Brain Res. 1985; 330 141-145
- 30 Perez-Velazquez J L, Valiante T A, Carlen P L. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci. 1994; 14 4308-4317
- 31 Orlowski J, Grinstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem. 1997; 272 22373-22376
- 32 Bevensee M O, Boron W F. pH regulation in mammalian neurons. (Eds) pH and brain function. New York: Wiley-Liss; 1998: 211-233
- 33 Cox G A, Lutz C M, Yang C L et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell. 1997; 91 139-148
- 34 Hentschke M, Wiemann M, Hentschke S et al. Mice with a targeted disruption of the Cl–/HCO3 – exchanger display a reduced seizure threshold. Mol Cell Biol. 2006; 26 182-191
- 35 Jacobs S, Ruusuvuori E, Sipilä S T et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. PNAS. 2008; 105 311-316
- 36 Kato T, Inubushi T, Kato N. Magnetic resonance spectroscopy in affective disorders. J Neuropsychiat Clin Neurosci. 1998; 10 133-147
- 37 Van der Grond J, Gerson J R, Laxter K D et al. Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy. Epilepsia. 1998; 39 527-536
- 38 Maddock R J. The lactic acid response to alkalosis in panic disorder: an integrative review. J Neuropsychiatry Clin Neurosci. 2001; 13 22-34
- 39 Wemmie J A, Chen J, Askwith C C et al. The acid-activated ion channel ASIC contibutes to synaptic plasticity, learning, and memory. Neuron. 2002; 34 463-477
- 40 Hoffmann E K, Simonsen L O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989; 69 315-382
- 41 Roberts Jr E L Jr, Chih C P. The pH buffering capacity of hippocampal slices from young adult and aged rats. Brain Res. 1998; 779 271-275
- 42 Kornhuber J, Reichel M, Tripal P et al. The role of ceramide in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2009; 259 (Suppl 2) 199-204
- 43 Smith G AM, Brett C L, Church J. Effects of noradrenaline on intracellular pH in acutely dissociated adult rat hippocampal neurones. J Physiol. 1998; 512 487-505
- 44 Goncalves P P, Meireles S M, Neves P et al. Synaptic vesicle Ca2 +/H+ antiport: dependence on the proton electrochemical gradient. Brain Res Mol Brain Res. 1999; 71 178-184
- 45 Andersen P. Organization of hippocampal neurons and their interconnections. In: Isaacson R L, Pribam K H, (Eds) The hippocampus, Vol 1: structure and development,. New York: Plenum; 1975: 155-175
- 46 Da Silva F HL, Wittner M P, Boeijinga P H et al. Anatomic organization and physiology of the limbic cortex. Physiol Rev. 1990; 2 453-511
- 47 Bonnet U, Wiemann M. Ammonium prepulse: effects on intracellular pH and bioelectric activity of CA 3-neurones in guinea pig hippocampal slices. Brain Res. 1999; 840 16-22
- 48 Bonnet U, Bingmann D, Wiltfang J et al. Modulatory effects of neuropsychopharmaca on intracellular pH of hippocampal neurones in. Br J Pharmacol. 2010; 159 474-483
- 49 Bevensee M O, Schwiening C F, Boron W F. Use of BCECF and propidium iodide to assess membrane integrity of acutely isolated CA 1 neurons from rat hippocampus. J Neurosci Methods. 1995; 58 61-75
- 50 Rambeck B, Jürgens U H, May T W et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia. 2006; 47 681-94
- 51 Wang X, Ratnaraj N, Patsalos P N. The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid and brain extracellular fluid (frontal cortex and hippocampus). Seizure. 2004; 13 574-581
- 52 Walker M C, Tong X, Perry H et al. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol. 2000; 130 242-248
- 53 Glotzbach R K, Preskorn S H. Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. Psychopharmacology. 1982; 78 25-27
- 54 Malberg J, Eisch A J, Nestler E J et al. Chronic antidepressant treatment increases neurogenesis in adult hippocampus. J Neurosci. 2000; 20 9104-9110
- 55 Madsen T, Treschow A, Bengzon J et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000; 47 1043-1049
- 56 Duman R S. Neuronal plasticity: consequences of stress and actions of antidepressant treatment. Dialogues Clin Neurosci. 2004; 6 157-169
- 57 Wiemann M, Splettstoesser F, Pannek H W et al. Effects of levetiracetam and topiramate on pHi regulation of human neocortical brain slices. Acta Physiol. 2006; 186 (Suppl 1) 126
- 58 Roos A, Boron W F. Intracellular pH. Physiol Rev. 1981; 61 296-434
- 59 Bonnet U, Bingmann D, Wiemann M. Intracellular pH modulates spontaneous and epileptiform bioelectric activity of hippocampal CA 3-neurones. Eur Neuropsychopharmacol. 2000; 97 97-103
- 60 Pasternack M, Voipio L, Kaila K. Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurons. Acta Physiol Scand. 1993; 148 229-231
- 61 Garnovskaya M N, Mukhin Y, Raymond J R. Rapid activation of sodium-proton exchange and extracellular signalregulated protein kinase in fibroblasts by G protein-coupled 5-HT1A receptor involves distinct signalling cascades. Biochem J. 1998; 330 489-495
- 62 Schewe B, Schmälzlin E, Walz B. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase. The Journal of Experimental Biology. 2008; 211 805-815
- 63 Moy L Y, Wang S P, Sonsalla P K. Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves the dopamine transporter. J Pharmacol Experimental Therap. 2007; 320 747-756
- 64 Wreden C C, Johnson J, Tran C et al. The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neuroscience. 2003; 23 1265-1275
- 65 Numata M, Petrecca K, Lake N et al. Identification of a mitochondrial Na+/H+ exchanger. J Biol Chem. 1998; 273 6951-6959
- 66 Bonnet U, Leniger T, Wiemann M. Moclobemide reduces intracellular pH and neuronal activity of CA 3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties. Neuropharmacology. 2000; 39 2067-2074
- 67 Cao Y, Mager S, Lester H A. H+permeation and pH regulation at a mammalian serotonin transporter. J Neurosci. 1997; 17 2257-2266
- 68 LeBlanc G, Bassilana M, Damiano-Forano E. Na+/H+exchange in bacteria and organelles. In: Grinstein S, editor. Na+/H+exchange.. Florida: CRC Press; 1988: 103-117
- 69 Kobaysashi Y, Pang T, Iwamoto T et al. Lithium activates mammalian Na+/H+-exchangers: isoform specificity and inhibition by genistein. Eur J Physiol. 2000; 439 455-462
- 70 Greenbaum N, Wilson D F. Role of intramitochondrial pH in the energetics and regulation of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 1991; 1058 113-120
- 71 Skulachev V P. Mitochondrial physiology and pathology, concepts of programmed death of organelles, cells and organisms. Mol Aspects Med. 1999; 20 139-184
- 72 Friberg H, Wieloch T. Mitochondrial permeability transition in acute neurodegeneration. Biochimie. 2002; 84 241-250
- 73 Cohen G, Kesler N. Monoamine oxidase and mitochondrial repiration. J Neurochemistry. 1999; 73 2310-2315
- 74 Bonnet U, Scherbaum N, Wiemann M. The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2008; 32 362-367
- 75 Büsselberg D, Wiemann M, Bingmann D et al. (2002) Monoamino oxidase inhibition is associated with neuronal acidification. Pflügers Arch Eur J Physiol. 2002; 443 (Suppl) 269
- 76 Marcocci L, De Marchi U, Salvi M et al. Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane permeability transition. J Membr Biol. 2002; 188 23-31
- 77 Wallace K B, Starkow A A. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol. 2000; 40 353-88
- 78 Wall S M, Kraut J A, Muallem S. Modulation of Na+-H+ exchange activity by intracellular Na+, H+, and Li+ in IMCD cells. Am J Physiol. 1988; 255 F331-F339
- 79 Bitran J A, Potter W Z, Manji H K et al. Chronic Li+ attenuates agonist- and phorbol ester-mediated Na+/H+ antiporter activity in HL 60 cells. Eur J Pharmacol. 1990; 188 193-202
- 80 Rumbach L, Mutet C, Cremel G et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol. 1986; 30 270-273
- 81 Benavides J, Martin A, Ugarte M et al. Inhibition by valproic acid of pyruvate uptake by brain mitochondria. Biochem Pharmacol. 1982; 31 1633-1636
- 82 Bonnet U, Bingmann D, Leniger T et al. Valproate acidifies hippocampal CA 3-neurones – a novel mode of action. Eur Neuropsychopharmacol. 2002; 12 279-285
- 83 Woodbury D M, Kemp J W. Other antiepileptic drugs. Sulfonamides and derivates: acetazolamide. In: Levy R, Mattson R, Meldrum B, (Eds). Antiepileptic drugs.. New York: Raven Press; 1989: 855-875
- 84 Leniger T, Wiemann M, Bingmann D et al. Carbonic anhydrase inhibitor sulthiame reduces intracellular epileptiform activity of hippocampal CA 3 neurones. Epilepsia. 2002; 43 469-474
- 85 Leniger T, Thöne J, Wiemann M. Topiramate modulates pH of hippocampal CA 3 neurons by combined effects on carbonic anhydrase and Cl–/HCO3 – -exchange. Br J Pharmacol. 2004; 142 831-842
- 86 Ali A, Ahmad F J, Pillai K K et al. Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol. 2005; 145 880-884
- 87 Hansen N, Finzel M, Block F. Antiepileptika-induzierte Enzephalopathie. Fortschr Neurol Psychiat. 2010; 78 590-598
- 88 Hugg J W, Laxer K D, Matson G B et al. Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging. Neurology. 1992; 42 2011-2018
- 89 Garcia P A, Laxer K D, Grond van der J et al. Phosphorus Magnetic Resonance Spectroscopy imaging in patients with frontal lobe epilepsy. Ann Neurol. 1994; 35 217-221
- 90 Hamakawa H, Murashita J, Yamada N et al. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry and Clinical Neurosciences. 2004; 58 82-88
- 91 Cowley D S, Arana G W. The diagnostic utility of lactate sensitivity in panic disorder. Arch Gen Psychiatry. 1990; 47 277-284
- 92 Shioiri T, Kato T, Murashita J et al. High-energy phosphate metabolism in the frontal lobes of patients with panic disorder detected by phase-encoded 31P-MRS. Biol Psychiatry. 1996; 40 785-793
- 93 Xiang Z M, Bergold P J. Synaptic depression and neuronal loss in transiently acidic hippocampal slice cultures. Brain Res. 2000; 881 77-87
- 94 Zha X M, Wemmie J A, Green S H et al. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. PNAS. 2006; 103 16556-16561
- 95 Soleimani M, Singh G. Physiologic and molecular aspects of Na+/H+ exchangers in health and disease processes. J Investig Med. 1995; 43 419-430
- 96 Kaku D A, Giffard R G, Choi D W. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science. 1993; 260 1516-1518
- 97 Liu C N, Somps C J. Na+/H+-exchanger-1 inhibitors reduce neuronal excitability and alter Na+-channel inactivation properties in rat primary sensory neurons. Toxicological Sciences. 2008; 103 346-353
- 98 Bonnet U, Wiemann M, Bingmann D et al. Transmembrane acid extrusion mechanisms: a target for neuropsychopharmacological drug design?. Pharmacopsychiatry. 1997; 30 154
- 99 Bonnet U, Leniger T, Wiemann M. Alteration of intracellular pH and activity of CA 3-pyramidal cells in guinea pig hippocampal slices by inhibition of transmembrane acid extrusion. Brain Research. 2000; 872 116-124
- 100 Sánchez C, Hyttel J. Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiology. 1999; 19 467-488
- 101 Richelson E. Pharmacology of antidepressants. Mayo Clin Proc. 2001; 76 511-527
- 102 Raley-Susman K M, Sapolsky R M, Kopito R R. Cl–/HCO3 – exchange function differs in adult and fetal hippocampal neurons. Brain Res. 1993; 614 308-314
- 103 Bosman G J, Renkawek K, Van Workum F P et al. Neuronal anion exchange proteins in Alzheimer’s disease pathology. J Neural Transm Suppl. 1998; 54 248-257
- 104 Rae C, Scott R B, Thompson C H et al. Is pH a biochemical marker of IQ?. Proc R Soc Lond B. 1996; 263 1061-1064
- 105 Parker M D, Bouyer P, Daley C M et al. Cloning and characterization of novel human SCL4A8 gene products encoding Na+ -driven Cl–/HCO3 – exchanger variants NDCBE-A, -C, -D. Physiol Genomics. 2008; 34 265-276
- 106 Bevensee M O, Boron W F. Fluorescence indicators. In: Kaila K, Ransom B R (Eds) pH and brain function.. New York: Wiley-Liss; 1998: 129-153
Prof. Dr. med. Udo Bonnet
Klinik für Psychiatrie und Psychotherapie Evangelisches Krankenhaus Castrop-Rauxel, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen
Grutholzallee 21
44577 Castrop-Rauxel
Email: u.bonnet@evk-castrop-rauxel.de