Klin Monbl Augenheilkd 2011; 228(5): 439-445
DOI: 10.1055/s-0031-1273355
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Immunreaktionen beim Glaukom

Autoimmunity and GlaucomaF. H. Grus1 , O. W. Gramlich2
  • 1Universitäts-Augenklinik, Experimentelle Ophthalmologie
  • 2Augenheilkunde, Augenklinik der Universitätsmedizin
Weitere Informationen

Publikationsverlauf

Eingegangen: 14.3.2011

Angenommen: 7.4.2011

Publikationsdatum:
29. April 2011 (online)

Zusammenfassung

Das Glaukom ist eine der häufigsten Ursache der Erblindung weltweit. Nach geltender Definition beschreibt der Begriff Glaukom eine Gruppe okulärer Erkrankungen, die zu einem fortschreitenden Verlust retinaler Ganglienzellen mit nachfolgenden typischen glaukomatösen Gesichtsfeldausfällen führen. Der intraokuläre Druck (IOD) wird zwar weiter als wichtigster Risikofaktor gewertet, seine Senkung halbiert das Risiko der Krankheitsprogression, stoppt sie aber nicht vollständig. Allerdings entwickelt eine Vielzahl von Patienten ein Glaukom, ohne dass ein erhöhter IOD bei ihnen vorliegt. Dies sind Hinweise darauf, dass der erhöhte IOD nicht die einzige Ursache der glaukomatösen Schädigung sein kann. Aktuell werden insbesondere der Mangel neurotropher Faktoren, eine vaskuläre Schädigung, Glutamattoxizität und Gliaaktivierung als Faktoren der Krankheitsentstehung diskutiert. Neben den bereits genannten Theorien rückt auch eine Beteiligung des Immunsystems immer mehr in den Mittelpunkt der Diskussion. Unsere Arbeitsgruppe konnte in vielen Untersuchungen des Serums und Kammerwassers von Glaukompatienten veränderte Immunreaktionen von Autoantikörpern gegen verschiedene Proteine nachweisen, so etwa gegen Hitzeschockproteine (HSP), α-Fodrin, saures Gliafaserprotein (GFAP) und Myelin-basisches Protein (MBP) und gegen Vimentin. In vitro konnte gezeigt werden, dass Antikörper gegen kleine Hitzeschockproteine die Apoptose retinaler Ganglienzellen (RGZ) auslösen können. Im experimentellen Autoimmun-Glaukomtiermodell kam es nach Immunisierung mit dem Hitzeschockprotein27 zu einem apoptotischen Untergang retinaler Ganglienzellen. Unklar ist, ob diese immunologischen Veränderungen Ursache oder Folge der Erkrankung sind. Unabhängig davon kann eine Veränderung in den Antikörperprofilen gegen okuläre Antigene als Grundlage einer diagnostischen Analyse verwendet werden, bevor sich die ersten klinischen Zeichen einer Glaukomerkrankung zeigen.

Abstract

Glaucoma is one of the most common causes of irreversible blindness worldwide. The pathogenesis of the disease is not fully understood. Elevated intraocular pressure is still considered to be one of the most important risk factors, but cannot explain all cases of glaucoma disease. The involvement of autoimmune mechanisms may play an important role in the pathogenesis of glaucoma. Evidence to support this theory has been shown by our group in previous studies: glaucoma patients were found to develop antibody alterations against specific retina and optic nerve proteins. In the experimental autoimmune glaucoma model, we demonstrated that an immunisation with these proteins causes retinal ganglion cell loss in an autoimmune context. In spite of these results, it is still unclear whether the changes in antibody patterns have a causal connection with glaucoma development or are merely an epiphenomena of the disease. However, these changes in the natural autoimmunity offer a new approach to gain deeper insight into glaucoma pathophysiology and to develop a diagnostic approach for early diagnosis.

Literatur

  • 1 Pfeiffer N, Krieglstein G K, Wellek S. Knowledge about glaucoma in the unselected population: a German survey.  J Glaucoma. 2002;  11 (5) 458-463
  • 2 Sommer A et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey.  Arch Ophthalmol. 1991;  109 (8) 1090-1095
  • 3 Quigley H A. Open-angle glaucoma.  N Engl J Med. 1993;  328 (15) 1097-1106
  • 4 Pfeiffer N. Glaukom und okuläre Hypertension: Grundlagen – Diagnostik – Therapie; 23 Tabellen. 2. ed. Stuttgart: Thieme; 2005. 2. ed.: 86
  • 5 EUGS .Terminology and Guidelines for Glaucoma, European Glaucoma Society. 2003 . : Introduction chapter.
  • 6 Quigley H A, Broman A T. The number of people with glaucoma worldwide in 2010 and 2020.  Br J Ophthalmol. 2006;  90 (3) 262-267
  • 7 World Health Organization .Blindness and Visual Disability Fact Sheet N° 282. Genf: World Health Organization; 2004
  • 8 Guo L, Cordeiro M F. Assessment of neuroprotection in the retina with DARC.  Prog Brain Res. 2008;  173 437-450
  • 9 Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma.  Prog Retin Eye Res. 1998;  17 (2) 267-289
  • 10 Flammer J et al. The impact of ocular blood flow in glaucoma.  Prog Retin Eye Res. 2002;  21 (4) 359-393
  • 11 Galang N, Sasaki H, Maulik N. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy.  Toxicology. 2000;  148 (2 – 3) 111-118
  • 12 Vrabec J P, Levin L A. The neurobiology of cell death in glaucoma.  Eye. 2007;  21 (Suppl 1) S11-S14
  • 13 Inman D M, Horner P J. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma.  Glia. 2007;  55 (9) 942-953
  • 14 Tanihara H et al. Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma.  Arch Ophthalmol. 1997;  115 (6) 752-756
  • 15 Tezel G et al. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma.  Invest Ophthalmol Vis Sci. 2003;  44 (7) 3025-3033
  • 16 Lipton S A, Rosenberg P A. Excitatory amino acids as a final common pathway for neurologic disorders.  N Engl J Med. 1994;  330 (9) 613-622
  • 17 Dreyer E B et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma.  Arch Ophthalmol. 1996;  114 (3) 299-305
  • 18 Grus F H et al. Autoimmunity and glaucoma.  J Glaucoma. 2008;  17 (1) 79-84
  • 19 Wax M B. The case for autoimmunity in glaucoma.  Exp Eye Res. 2010; [Epub ahead of print]
  • 20 Grus F, Sun D. Immunological mechanisms in glaucoma.  Semin Immunopathol. 2008;  30 (2) 121-126
  • 21 Wax M B, Barrett D A, Pestronk A. Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma.  Am J Ophthalmol. 1994;  117 (5) 561-568
  • 22 Wax M B et al. Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma.  Am J Ophthalmol. 1998;  125 (2) 145-157
  • 23 Joachim S C et al. IgG antibody patterns in aqueous humor of patients with primary open angle glaucoma and pseudoexfoliation glaucoma.  Mol Vis. 2007;  13 1573-1579
  • 24 Grus F H et al. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States.  Invest Ophthalmol Vis Sci. 2006;  47 (3) 968-976
  • 25 Li W H et al. Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals from Beijing.  Proteomics. 2006;  6 (17) 4781-4789
  • 26 Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’.  Immunol Today. 1991;  12 (5) 154-159
  • 27 Grus F H et al. Complex autoantibody repertoires in patients with glaucoma.  Mol Vis. 2004;  10 132-137
  • 28 Joachim S C et al. Antibodies to alpha B-Crystallin, Vimentin, and Heat Shock Protein 70 in Aqueous Humor of Patients with Normal Tension Glaucoma and IgG Antibody Patterns Against Retinal Antigen in Aqueous Humor.  Curr Eye Res. 2007;  32 (6) 501-509
  • 29 Joachim S C et al. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 (4) 573-580
  • 30 Tezel G, Edward D P, Wax M B. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma.  Arch Ophthalmol. 1999;  117 (7) 917-924
  • 31 Maruyama I, Ohguro H, Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients.  Invest Ophthalmol Vis Sci. 2000;  41 (7) 1657-1665
  • 32 Ikeda Y et al. Clinical significance of serum antibody against neuron-specific enolase in glaucoma patients.  Jpn J Ophthalmol. 2002;  46 (1) 13-17
  • 33 Yang J et al. Serum autoantibody against glutathione S-transferase in patients with glaucoma.  Invest Ophthalmol Vis Sci. 2001;  42 (6) 1273-1276
  • 34 Paterson P Y et al. Endogenous myelin basic protein-serum factors (MBP-SFs) and anti-MBP antibodies in humans. Occurrence in sera of clinically well subjects and patients with multiple sclerosis.  J Neurol Sci. 1981;  52 (1) 37-51
  • 35 Warren K G, Catz I. Relative frequency of autoantibodies to myelin basic protein and proteolipid protein in optic neuritis and multiple sclerosis cerebrospinal fluid.  J Neurol Sci. 1994;  121 (1) 66-73
  • 36 Ponomarenko N A et al. Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale.  Immunol Lett. 2006;  103 (1) 45-50
  • 37 Poletaev A, Osipenko L. General network of natural autoantibodies as immunological homunculus (Immunculus).  Autoimmun Rev. 2003;  2 (5) 264-271
  • 38 Tezel G, Wax M B. The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells.  J Neurosci. 2000;  20 (10) 3552-3562
  • 39 Maruyama I et al. Autoantibody against neuron-specific enolase found in glaucoma patients causes retinal dysfunction in vivo.  Jpn J Ophthalmol. 2002;  46 (1) 1-12
  • 40 Romano C et al. Epitope mapping of anti-rhodopsin antibodies from patients with normal pressure glaucoma.  Invest Ophthalmol Vis Sci. 1999;  40 (6) 1275-1280
  • 41 Wax M B et al. Induced Autoimmunity to Heat Shock Proteins Elicits Glaucomatous Loss of Retinal Ganglion Cell Neurons via activated T-cell-derived fas-ligand.  J Neurosci. 2008;  28 (46) 12085-12096
  • 42 Wax M B et al. A Model of Experimental Autoimmune Glaucoma in Rats Elicited by Immunization With Heat Shock Protein27.  Invest Ophthalmol Vis Sci. 2002;  43 (12) 2884
  • 43 Joachim S C et al. Complex Antibody Profile Changes in an Experimental Autoimmune Glaucoma Animal Model.  Invest Ophthalmol Vis Sci. 2009;  50 (10) 4734-4742
  • 44 Joachim S C et al. Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization in a rat model of experimental autoimmune glaucoma.  Curr Eye Res. 2010;  35 (10) 900-908
  • 45 Gramlich O W et al. Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis.  Graefes Arch Clin Exp Ophthalmol. 2011;  [Epub ahead of print]
  • 46 Acarin L et al. Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain.  Glia. 2002;  38 (1) 1-14
  • 47 Sanz O et al. Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical aspiration lesion.  Glia. 2001;  36 (3) 259-270
  • 48 Jeon G S et al. Glial expression of the 90-kDa heat shock protein (HSP90) and the 94-kDa glucose-regulated protein (GRP94) following an excitotoxic lesion in the mouse hippocampus.  Glia. 2004;  48 (3) 250-258
  • 49 Villapol S et al. Survivin and heat shock protein 25 / 27 colocalize with cleaved caspase-3 in surviving reactive astrocytes following excitotoxicity to the immature brain.  Neuroscience. 2008;  153 (1) 108-119
  • 50 Pandey P et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3.  Oncogene. 2000;  19 (16) 1975-1981
  • 51 Paul C et al. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27).  Exp Cell Res. 2010;  316 (9) 1535-1552
  • 52 Boltz-Nitulescu G, Bazin H, Spiegelberg H L. Specificity of fc receptors for IgG2a, IgG1 /IgG2b, and IgE on rat macrophages.  J Exp Med. 1981;  154 (2) 374-384
  • 53 Marta C B, Bansal R, Pfeiffer S E. Microglial Fc receptors mediate physiological changes resulting from antibody cross-linking of myelin oligodendrocyte glycoprotein.  J Neuroimmunol. 2008;  196 (1 – 2) 35-40
  • 54 Sutter A, Hekmat A, Luckenbach G A. Antibody-mediated tumor cytotoxicity of microglia.  Pathobiology. 1991;  59 (4) 254-258
  • 55 Ulvestad E et al. Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets.  J Neuropathol Exp Neurol. 1994;  53 (1) 27-36
  • 56 Kim S U, Vellis de J. Microglia in health and disease.  J Neurosci Res. 2005;  81 (3) 302-313
  • 57 Badie B et al. Expression of Fas ligand by microglia: possible role in glioma immune evasion.  J Neuroimmunol. 2001;  120 (1 – 2) 19-24
  • 58 Salvesen G S. Caspases and apoptosis.  Essays Biochem. 2002;  38 9-19
  • 59 Hughes W F. Quantitation of ischemic damage in the rat retina.  Exp Eye Res. 1991;  53 (5) 573-582
  • 60 Adachi M et al. High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats.  Graefes Arch Clin Exp Ophthalmol. 1996;  234 (7) 445-451
  • 61 Grozdanic S D et al. Functional characterization of retina and optic nerve after acute ocular ischemia in rats.  Invest Ophthalmol Vis Sci. 2003;  44 (6) 2597-2605
  • 62 Prasad S S et al. Retinal gene expression after central retinal artery ligation: effects of ischemia and reperfusion.  Invest Ophthalmol Vis Sci. 2010;  51 (12) 6207-6219
  • 63 Joachim S et al. Up-regulation of antibody response to heat shock proteins and tissue antigens in an ocular ischemia model.  Invest Ophthalmol Vis Sci. 2011;  [Epub ahead of print]
  • 64 Scofield R H. Autoantibodies as predictors of disease.  Lancet. 2004;  363 (9420) 1544-1546
  • 65 Shmerling R H. Autoantibodies in systemic lupus erythematosus – there before you know it.  N Engl J Med. 2003;  349 (16) 1499-1500

PD Dr. Franz H. Grus

Universitäts-Augenklinik, Experimentelle Ophthalmologie

55101 Mainz

Telefon: ++ 49/61 31/17 33 28

eMail: grus@eye-research.org