RSS-Feed abonnieren
DOI: 10.1055/s-0031-1273355
© Georg Thieme Verlag KG Stuttgart · New York
Immunreaktionen beim Glaukom
Autoimmunity and GlaucomaPublikationsverlauf
Eingegangen: 14.3.2011
Angenommen: 7.4.2011
Publikationsdatum:
29. April 2011 (online)

Zusammenfassung
Das Glaukom ist eine der häufigsten Ursache der Erblindung weltweit. Nach geltender Definition beschreibt der Begriff Glaukom eine Gruppe okulärer Erkrankungen, die zu einem fortschreitenden Verlust retinaler Ganglienzellen mit nachfolgenden typischen glaukomatösen Gesichtsfeldausfällen führen. Der intraokuläre Druck (IOD) wird zwar weiter als wichtigster Risikofaktor gewertet, seine Senkung halbiert das Risiko der Krankheitsprogression, stoppt sie aber nicht vollständig. Allerdings entwickelt eine Vielzahl von Patienten ein Glaukom, ohne dass ein erhöhter IOD bei ihnen vorliegt. Dies sind Hinweise darauf, dass der erhöhte IOD nicht die einzige Ursache der glaukomatösen Schädigung sein kann. Aktuell werden insbesondere der Mangel neurotropher Faktoren, eine vaskuläre Schädigung, Glutamattoxizität und Gliaaktivierung als Faktoren der Krankheitsentstehung diskutiert. Neben den bereits genannten Theorien rückt auch eine Beteiligung des Immunsystems immer mehr in den Mittelpunkt der Diskussion. Unsere Arbeitsgruppe konnte in vielen Untersuchungen des Serums und Kammerwassers von Glaukompatienten veränderte Immunreaktionen von Autoantikörpern gegen verschiedene Proteine nachweisen, so etwa gegen Hitzeschockproteine (HSP), α-Fodrin, saures Gliafaserprotein (GFAP) und Myelin-basisches Protein (MBP) und gegen Vimentin. In vitro konnte gezeigt werden, dass Antikörper gegen kleine Hitzeschockproteine die Apoptose retinaler Ganglienzellen (RGZ) auslösen können. Im experimentellen Autoimmun-Glaukomtiermodell kam es nach Immunisierung mit dem Hitzeschockprotein27 zu einem apoptotischen Untergang retinaler Ganglienzellen. Unklar ist, ob diese immunologischen Veränderungen Ursache oder Folge der Erkrankung sind. Unabhängig davon kann eine Veränderung in den Antikörperprofilen gegen okuläre Antigene als Grundlage einer diagnostischen Analyse verwendet werden, bevor sich die ersten klinischen Zeichen einer Glaukomerkrankung zeigen.
Abstract
Glaucoma is one of the most common causes of irreversible blindness worldwide. The pathogenesis of the disease is not fully understood. Elevated intraocular pressure is still considered to be one of the most important risk factors, but cannot explain all cases of glaucoma disease. The involvement of autoimmune mechanisms may play an important role in the pathogenesis of glaucoma. Evidence to support this theory has been shown by our group in previous studies: glaucoma patients were found to develop antibody alterations against specific retina and optic nerve proteins. In the experimental autoimmune glaucoma model, we demonstrated that an immunisation with these proteins causes retinal ganglion cell loss in an autoimmune context. In spite of these results, it is still unclear whether the changes in antibody patterns have a causal connection with glaucoma development or are merely an epiphenomena of the disease. However, these changes in the natural autoimmunity offer a new approach to gain deeper insight into glaucoma pathophysiology and to develop a diagnostic approach for early diagnosis.
Schlüsselwörter
Glaukom - Autoimmunität - Proteomics - natürliche Autoimmunität - Autoantikörper
Key words
glaucoma - autoimmunity - proteomics - natural autoimmunity - autoantibodies
Literatur
- 1
Pfeiffer N, Krieglstein G K, Wellek S.
Knowledge about glaucoma in the unselected population: a German survey.
J Glaucoma.
2002;
11 (5)
458-463
MissingFormLabel
- 2
Sommer A et al.
Relationship between intraocular pressure and primary open angle glaucoma among white
and black Americans. The Baltimore Eye Survey.
Arch Ophthalmol.
1991;
109 (8)
1090-1095
MissingFormLabel
- 3
Quigley H A.
Open-angle glaucoma.
N Engl J Med.
1993;
328 (15)
1097-1106
MissingFormLabel
- 4 Pfeiffer N. Glaukom und okuläre Hypertension: Grundlagen – Diagnostik – Therapie; 23 Tabellen. 2. ed. Stuttgart: Thieme; 2005. 2. ed.: 86
MissingFormLabel
- 5 EUGS .Terminology and Guidelines for Glaucoma, European Glaucoma Society. 2003 . : Introduction chapter.
MissingFormLabel
- 6
Quigley H A, Broman A T.
The number of people with glaucoma worldwide in 2010 and 2020.
Br J Ophthalmol.
2006;
90 (3)
262-267
MissingFormLabel
- 7 World Health Organization .Blindness and Visual Disability Fact Sheet N° 282. Genf: World Health Organization; 2004
MissingFormLabel
- 8
Guo L, Cordeiro M F.
Assessment of neuroprotection in the retina with DARC.
Prog Brain Res.
2008;
173
437-450
MissingFormLabel
- 9
Flammer J, Orgul S.
Optic nerve blood-flow abnormalities in glaucoma.
Prog Retin Eye Res.
1998;
17 (2)
267-289
MissingFormLabel
- 10
Flammer J et al.
The impact of ocular blood flow in glaucoma.
Prog Retin Eye Res.
2002;
21 (4)
359-393
MissingFormLabel
- 11
Galang N, Sasaki H, Maulik N.
Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant
therapy.
Toxicology.
2000;
148 (2 – 3)
111-118
MissingFormLabel
- 12
Vrabec J P, Levin L A.
The neurobiology of cell death in glaucoma.
Eye.
2007;
21 (Suppl 1)
S11-S14
MissingFormLabel
- 13
Inman D M, Horner P J.
Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma.
Glia.
2007;
55 (9)
942-953
MissingFormLabel
- 14
Tanihara H et al.
Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with
experimental glaucoma.
Arch Ophthalmol.
1997;
115 (6)
752-756
MissingFormLabel
- 15
Tezel G et al.
Immunohistochemical assessment of the glial mitogen-activated protein kinase activation
in glaucoma.
Invest Ophthalmol Vis Sci.
2003;
44 (7)
3025-3033
MissingFormLabel
- 16
Lipton S A, Rosenberg P A.
Excitatory amino acids as a final common pathway for neurologic disorders.
N Engl J Med.
1994;
330 (9)
613-622
MissingFormLabel
- 17
Dreyer E B et al.
Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma.
Arch Ophthalmol.
1996;
114 (3)
299-305
MissingFormLabel
- 18
Grus F H et al.
Autoimmunity and glaucoma.
J Glaucoma.
2008;
17 (1)
79-84
MissingFormLabel
- 19
Wax M B.
The case for autoimmunity in glaucoma.
Exp Eye Res.
2010; [Epub ahead of print]
MissingFormLabel
- 20
Grus F, Sun D.
Immunological mechanisms in glaucoma.
Semin Immunopathol.
2008;
30 (2)
121-126
MissingFormLabel
- 21
Wax M B, Barrett D A, Pestronk A.
Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure
glaucoma.
Am J Ophthalmol.
1994;
117 (5)
561-568
MissingFormLabel
- 22
Wax M B et al.
Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure
glaucoma.
Am J Ophthalmol.
1998;
125 (2)
145-157
MissingFormLabel
- 23
Joachim S C et al.
IgG antibody patterns in aqueous humor of patients with primary open angle glaucoma
and pseudoexfoliation glaucoma.
Mol Vis.
2007;
13
1573-1579
MissingFormLabel
- 24
Grus F H et al.
Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany
and the United States.
Invest Ophthalmol Vis Sci.
2006;
47 (3)
968-976
MissingFormLabel
- 25
Li W H et al.
Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals
from Beijing.
Proteomics.
2006;
6 (17)
4781-4789
MissingFormLabel
- 26
Avrameas S.
Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’.
Immunol Today.
1991;
12 (5)
154-159
MissingFormLabel
- 27
Grus F H et al.
Complex autoantibody repertoires in patients with glaucoma.
Mol Vis.
2004;
10
132-137
MissingFormLabel
- 28
Joachim S C et al.
Antibodies to alpha B-Crystallin, Vimentin, and Heat Shock Protein 70 in Aqueous Humor
of Patients with Normal Tension Glaucoma and IgG Antibody Patterns Against Retinal
Antigen in Aqueous Humor.
Curr Eye Res.
2007;
32 (6)
501-509
MissingFormLabel
- 29
Joachim S C et al.
Sera of glaucoma patients show autoantibodies against myelin basic protein and complex
autoantibody profiles against human optic nerve antigens.
Graefes Arch Clin Exp Ophthalmol.
2008;
246 (4)
573-580
MissingFormLabel
- 30
Tezel G, Edward D P, Wax M B.
Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma.
Arch Ophthalmol.
1999;
117 (7)
917-924
MissingFormLabel
- 31
Maruyama I, Ohguro H, Ikeda Y.
Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found
in glaucoma patients.
Invest Ophthalmol Vis Sci.
2000;
41 (7)
1657-1665
MissingFormLabel
- 32
Ikeda Y et al.
Clinical significance of serum antibody against neuron-specific enolase in glaucoma
patients.
Jpn J Ophthalmol.
2002;
46 (1)
13-17
MissingFormLabel
- 33
Yang J et al.
Serum autoantibody against glutathione S-transferase in patients with glaucoma.
Invest Ophthalmol Vis Sci.
2001;
42 (6)
1273-1276
MissingFormLabel
- 34
Paterson P Y et al.
Endogenous myelin basic protein-serum factors (MBP-SFs) and anti-MBP antibodies in
humans. Occurrence in sera of clinically well subjects and patients with multiple
sclerosis.
J Neurol Sci.
1981;
52 (1)
37-51
MissingFormLabel
- 35
Warren K G, Catz I.
Relative frequency of autoantibodies to myelin basic protein and proteolipid protein
in optic neuritis and multiple sclerosis cerebrospinal fluid.
J Neurol Sci.
1994;
121 (1)
66-73
MissingFormLabel
- 36
Ponomarenko N A et al.
Catalytic activity of autoantibodies toward myelin basic protein correlates with the
scores on the multiple sclerosis expanded disability status scale.
Immunol Lett.
2006;
103 (1)
45-50
MissingFormLabel
- 37
Poletaev A, Osipenko L.
General network of natural autoantibodies as immunological homunculus (Immunculus).
Autoimmun Rev.
2003;
2 (5)
264-271
MissingFormLabel
- 38
Tezel G, Wax M B.
The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells.
J Neurosci.
2000;
20 (10)
3552-3562
MissingFormLabel
- 39
Maruyama I et al.
Autoantibody against neuron-specific enolase found in glaucoma patients causes retinal
dysfunction in vivo.
Jpn J Ophthalmol.
2002;
46 (1)
1-12
MissingFormLabel
- 40
Romano C et al.
Epitope mapping of anti-rhodopsin antibodies from patients with normal pressure glaucoma.
Invest Ophthalmol Vis Sci.
1999;
40 (6)
1275-1280
MissingFormLabel
- 41
Wax M B et al.
Induced Autoimmunity to Heat Shock Proteins Elicits Glaucomatous Loss of Retinal Ganglion
Cell Neurons via activated T-cell-derived fas-ligand.
J Neurosci.
2008;
28 (46)
12085-12096
MissingFormLabel
- 42
Wax M B et al.
A Model of Experimental Autoimmune Glaucoma in Rats Elicited by Immunization With
Heat Shock Protein27.
Invest Ophthalmol Vis Sci.
2002;
43 (12)
2884
MissingFormLabel
- 43
Joachim S C et al.
Complex Antibody Profile Changes in an Experimental Autoimmune Glaucoma Animal Model.
Invest Ophthalmol Vis Sci.
2009;
50 (10)
4734-4742
MissingFormLabel
- 44
Joachim S C et al.
Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization
in a rat model of experimental autoimmune glaucoma.
Curr Eye Res.
2010;
35 (10)
900-908
MissingFormLabel
- 45
Gramlich O W et al.
Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis.
Graefes Arch Clin Exp Ophthalmol.
2011;
[Epub ahead of print]
MissingFormLabel
- 46
Acarin L et al.
Glial expression of small heat shock proteins following an excitotoxic lesion in the
immature rat brain.
Glia.
2002;
38 (1)
1-14
MissingFormLabel
- 47
Sanz O et al.
Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical
aspiration lesion.
Glia.
2001;
36 (3)
259-270
MissingFormLabel
- 48
Jeon G S et al.
Glial expression of the 90-kDa heat shock protein (HSP90) and the 94-kDa glucose-regulated
protein (GRP94) following an excitotoxic lesion in the mouse hippocampus.
Glia.
2004;
48 (3)
250-258
MissingFormLabel
- 49
Villapol S et al.
Survivin and heat shock protein 25 / 27 colocalize with cleaved caspase-3 in surviving
reactive astrocytes following excitotoxicity to the immature brain.
Neuroscience.
2008;
153 (1)
108-119
MissingFormLabel
- 50
Pandey P et al.
Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3.
Oncogene.
2000;
19 (16)
1975-1981
MissingFormLabel
- 51
Paul C et al.
Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27).
Exp Cell Res.
2010;
316 (9)
1535-1552
MissingFormLabel
- 52
Boltz-Nitulescu G, Bazin H, Spiegelberg H L.
Specificity of fc receptors for IgG2a, IgG1 /IgG2b, and IgE on rat macrophages.
J Exp Med.
1981;
154 (2)
374-384
MissingFormLabel
- 53
Marta C B, Bansal R, Pfeiffer S E.
Microglial Fc receptors mediate physiological changes resulting from antibody cross-linking
of myelin oligodendrocyte glycoprotein.
J Neuroimmunol.
2008;
196 (1 – 2)
35-40
MissingFormLabel
- 54
Sutter A, Hekmat A, Luckenbach G A.
Antibody-mediated tumor cytotoxicity of microglia.
Pathobiology.
1991;
59 (4)
254-258
MissingFormLabel
- 55
Ulvestad E et al.
Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis
of antibody-coated targets.
J Neuropathol Exp Neurol.
1994;
53 (1)
27-36
MissingFormLabel
- 56
Kim S U, Vellis de J.
Microglia in health and disease.
J Neurosci Res.
2005;
81 (3)
302-313
MissingFormLabel
- 57
Badie B et al.
Expression of Fas ligand by microglia: possible role in glioma immune evasion.
J Neuroimmunol.
2001;
120 (1 – 2)
19-24
MissingFormLabel
- 58
Salvesen G S.
Caspases and apoptosis.
Essays Biochem.
2002;
38
9-19
MissingFormLabel
- 59
Hughes W F.
Quantitation of ischemic damage in the rat retina.
Exp Eye Res.
1991;
53 (5)
573-582
MissingFormLabel
- 60
Adachi M et al.
High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve
and retina in rats.
Graefes Arch Clin Exp Ophthalmol.
1996;
234 (7)
445-451
MissingFormLabel
- 61
Grozdanic S D et al.
Functional characterization of retina and optic nerve after acute ocular ischemia
in rats.
Invest Ophthalmol Vis Sci.
2003;
44 (6)
2597-2605
MissingFormLabel
- 62
Prasad S S et al.
Retinal gene expression after central retinal artery ligation: effects of ischemia
and reperfusion.
Invest Ophthalmol Vis Sci.
2010;
51 (12)
6207-6219
MissingFormLabel
- 63
Joachim S et al.
Up-regulation of antibody response to heat shock proteins and tissue antigens in an
ocular ischemia model.
Invest Ophthalmol Vis Sci.
2011;
[Epub ahead of print]
MissingFormLabel
- 64
Scofield R H.
Autoantibodies as predictors of disease.
Lancet.
2004;
363 (9420)
1544-1546
MissingFormLabel
- 65
Shmerling R H.
Autoantibodies in systemic lupus erythematosus – there before you know it.
N Engl J Med.
2003;
349 (16)
1499-1500
MissingFormLabel
PD Dr. Franz H. Grus
Universitäts-Augenklinik, Experimentelle Ophthalmologie
55101 Mainz
Telefon: ++ 49/61 31/17 33 28
eMail: grus@eye-research.org