Fortschr Neurol Psychiatr 2011; 79(8): 475-487
DOI: 10.1055/s-0031-1273441
Fort- und Weiterbildung

© Georg Thieme Verlag KG Stuttgart · New York

Klinische Hirnanatomie neuropsychologischer Syndrome

Clinical Neuroanatomy of Neuropsychological SyndromesM. Paulig1
  • 1Neurologie und klinische Neurophysiologie, Schön Klinik München Schwabing
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. August 2011 (online)

Lernziele

Neuropsychologische Syndrome sind häufige Folgen von akuten und chronischen Hirnschädigungen. Sie haben oft erhebliche Auswirkungen auf die Alltagskompetenz der Betroffenen. Viele kognitive Störungsbilder haben einen hirnlokalisatorischen Bezug. Die Kenntnis ihrer Neuroanatomie hilft dem Kliniker bei der Lokalisation und Diagnose von zerebralen Krankheitsprozessen. Umgekehrt kann sie auch zusammen mit der Bildgebung bei der hypothesengesteuerten Planung einer neuropsychologischen Diagnostik dienlich sein. Dieser Artikel vermittelt einen Überblick über den aktuellen Kenntnisstand.

Literatur

  • 1 Harlow J M. Recovery from the Passage of an Iron Bar Through the Head.  Publications of the Massachusetts Medical Society. 1868;  2 327-347
  • 2 Damasio H, Grabowski T, Frank R et al. The return of Phineas Gage: clues about the brain from the skull of a famous patient.  Science. 1994;  264 1102-1105
  • 3 Macmillan M, Lena M L. Rehabilitating Phineas Gage.  Neuropsychol Rehabil. 2010;  20 641-658
  • 4 Broca P. Perte de la parole: ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau.  Bulletins de la Societe d’anthropologie, 1re serie. 1861;  2 235-238
  • 5 Dronkers N F, Plaisant O, Iba-Zizen M T et al. Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong.  Brain. 2007;  130 (Pt 5) 1432-1441
  • 6 Mesulam M M. From sensation to cognition.  Brain. 1998;  121 (Pt 6) 1013-1052
  • 7 Catani M, Ffytche D H. The rises and falls of disconnection syndromes.  Brain. 2005;  128 (Pt 10) 2224-2239
  • 8 Prosiegel M. Beschreibung der Patientenstichprobe einer neuropsychologischen Rehabilitationsklinik. In: Cramon von D, Zihl J, (Hrsg) Neuropsychologische Rehabilitation.. Rehabilitation und Prävention 19. Heidelberg: Springer; 1988: 386-399
  • 9 Sturm W, Willmes K. Efficacy of a reaction training on various attentional and cognitive functions in stroke patients.  Neuropsychological Rehabilitation. 2001;  1 259-280
  • 10 Shiffrin R M, Schneider W. Automatic and controlled processing revisited.  Psychol Rev. 1984;  91 269-276
  • 11 Sturm W, Simone de A, Krause B J et al. Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere.  Neuropsychologia. 1999;  37 797-805
  • 12 Howes D, Boller F. Simple reaction time: evidence for focal impairment from lesions of the right hemisphere.  Brain. 1975;  98 317-332
  • 13 McDonald C R, Bauer R M, Filoteo J V et al. Attentional inhibition in patients with focal frontal lobe lesions.  J Clin Exp Neuropsychol. 2005;  27 485-503
  • 14 Sasaki Y, Hadjikhani N, Fischl B et al. Local and global attention are mapped retinotopically in human occipital cortex.  Proc Natl Acad Sci U S A. 2001;  98 2077-2082
  • 15 Demaree H, DeLuca J, Gaudino E A et al. Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation.  J Neurol Neurosurg Psychiatry. 1999;  67 661-663
  • 16 Guillery R W, Feig S L, Loszadi D A. Paying attention to the thalamic reticular nucleus.  Trends in Neurosci. 1998;  21 28-32
  • 17 Plum F, Posner J B. The diagnosis of stupor and coma. Philadelphia: Davis Company; 1980
  • 18 Wheeler M E, Petersen S E, Buckner R L. Memory’s echo: vivid remembering reactivates sensory-specific cortex.  Proc Natl Acad Sci U S A. 2000;  97 11125-11129
  • 19 Squire L R. The legacy of patient H. M. for neuroscience.  Neuron. 2009;  61 6-9
  • 20 Bartsch T, Alfke K, Stingele R et al. Selective affection of hippocampal CA-1 neurons in patients with transient global amnesia without long-term sequelae.  Brain. 2006;  129 (Pt 11) 2874-2884
  • 21 Cramon von D, Hebel N. Lern- und Gedächtnisstörungen bei fokalen zerebralen Gewebsnekrosen.  Fortschr Neurol Psychiatr. 1989;  57 544-550
  • 22 Böttger S, Prosiegel M, Steiger H J et al. Neurobehavioural disturbances, rehabilitation outcome, and lesion site in patients after rupture and repair of anterior communicating artery aneurysm.  J Neurol Neurosurg Psychiatry. 1998;  65 93-102
  • 23 Debiec J, Díaz-Mataix L, Bush D E et al. The amygdala encodes specific sensory features of an aversive reinforcer.  Nat Neurosci. 2010;  13 536-537
  • 24 Schnider A. Spontaneous confabulation and the adaptation of thought to ongoing reality.  Nat Rev Neurosci. 2003;  4 662-671
  • 25 Kroll N E, Markowitsch H J, Knight R T et al. Retrieval of old memories: the temporofrontal hypothesis.  Brain. 1997;  120 1377-1399
  • 26 Markowitsch H J. Functional retrograde amnesia – mnestic block syndrome.  Cortex. 2002;  38 651-654
  • 27 Drechsler R. Exekutive Funktionen: Übersicht und Taxonomie.  Zeitschrift für Neuropsychologie. 2007;  18 233-248
  • 28 Wilson C R, Gaffan D, Browning P G et al. Functional localization within the prefrontal cortex: missing the forest for the trees?.  Trends Neurosci. 2010;  33 533-540
  • 29 Chikazoe J, Konishi S, Asari T et al. Activation of right inferior frontal gyrus during response inhibition across response modalities.  J Cogn Neurosci. 2007;  19 69-80
  • 30 Dagher A, Owen A M, Boecker H et al. Mapping the network for planning: a correlational PET activation study with the Tower of London task.  Brain. 1999;  122 (Pt 10) 1973-1987
  • 31 Gilbert S J, Henson R N, Simons J S. The Scale of Functional Specialization within Human Prefrontal Cortex.  J Neurosci. 2010;  30 1233-1237
  • 32 Kinnunen K M, Greenwood R, Powell J H et al. White matter damage and cognitive impairment after traumatic brain injury.  Brain. 2011;  134 (Pt 2) 449-463
  • 33 Lamar M, Price C C, Giovannetti T et al. The dysexecutive syndrome associated with ischaemic vascular disease and related subcortical neuropathology: a Boston process approach.  Behav Neurol. 2010;  22 53-62
  • 34 Saver J L, Damasio A R. Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage.  Neuropsychologia. 1991;  29 1241-1249
  • 35 Bechara A, Damasio A R, Damasio H et al. Insensitivity to future consequences following damage to human prefrontal cortex.  Cognition. 1994;  50 7-15
  • 36 Maia T V, McClelland J L. A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task.  Proc Natl Acad Sci U S A. 2004;  101 16075-16080
  • 37 Manes F, Sahakian B, Clark L et al. Decision-making processes following damage to the prefrontal cortex.  Brain. 2002;  125 (Pt 3) 624-639
  • 38 Kravitz D J, Saleem K S, Baker C I et al. A new neural framework for visuospatial processing.  Nat Rev Neurosci. 2011;  12 217-230
  • 39 Karnath H O, Rüter J, Mandler A et al. The anatomy of object recognition – visual form agnosia caused by medial occipitotemporal stroke.  J Neurosci. 2009;  29 5854-5862
  • 40 Rizzo M, Vecera S P. Psychoanatomical substrates of Bálint’s syndrome.  J Neurol Neurosurg Psychiatry. 2002;  72 162-178
  • 41 Ringman J M, Saver J L, Woolson R F et al. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort.  Neurology. 2004;  63 468-474
  • 42 Karnath H O, Fruhmann Berger M, Kuker W et al. The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients.  Cereb Cortex. 2004;  14 1164-1172
  • 43 Golay L, Schnider A, Ptak R. Cortical and subcortical anatomy of chronic spatial neglect following vascular damage.  Behav Brain Funct. 2008;  4 43
  • 44 Willmes K, Poeck K. To what extent can aphasic syndromes be localized?.  Brain. 1993;  116 (Pt 6) 1527-1540
  • 45 Damasio A R. Aphasia.  N Engl J Med. 1992;  326 531-539
  • 46 Catani M, Jones D K, Ffytche D H. Perisylvian language networks of the human brain.  Ann Neurol. 2005;  57 8-16
  • 47 Hickok G, Poeppel D. The cortical organization of speech processing.  Nat Rev Neurosci. 2007;  8 393-402
  • 48 Saur D, Kreher B W, Schnell S et al. Ventral and dorsal pathways for language.  Proc Natl Acad Sci U S A. 2008;  105 18035-18040
  • 49 Dronkers N F. A new brain region for coordinating speech articulation.  Nature. 1996;  384 159-161
  • 50 Hillis A E, Work M, Barker P B et al. Re-examining the brain regions crucial for orchestrating speech articulation.  Brain. 2004;  127 1479-1487
  • 51 Goldenberg G, Hagmann S. Tool use and mechanical problem solving in apraxia.  Neuropsychologia. 1998;  36 581-589
  • 52 Weiss P H, Fink G R. Strukturelle und funktionelle Bildgebung zur Pathopysiologie der Apraxie.  Nervenarzt. 2010;  81 1444-1449
  • 53 Leiguarda R C, Marsden C D. Limb apraxias – Higher-order disorders of sensorimotor integration.  Brain. 2000;  123 860-879
  • 54 Goldenberg G, Strauss S. Hemisphere asymmetries for imitation of novel gestures.  Neurology. 2002;  59 893-897
  • 55 Goldenberg G, Karnath H O. The neural basis of imitation is body part specific.  J Neurosci. 2006;  26 6282-6287

Dr. Mario Paulig

Neurologie und klinische Neurophysiologie, Schön Klinik München Schwabing

Parzivalplatz 4

80804 München

eMail: mpaulig@schoen-kliniken.de