Int J Sports Med 2011; 32(7): 529-534
DOI: 10.1055/s-0031-1273689
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

A Semi-Tethered Test for Power Assessment in Running

M. C. S. Lima1 , L. F. P. Ribeiro2 , M. Papoti3 , P. R. P. Santiago4 , S. A. Cunha5 , L. E. B. Martins5 , C. A. Gobatto6
  • 1Universidade do Oeste Paulista, Laboratório de Fisiologia do Exercício, Presidente Prudente, Brazil
  • 2Universidade Estadual de Santa Cruz, Departamento de Ciências da Saúde, Ilhéus, Brazil
  • 3Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, Presidente Prudente, Brazil
  • 4Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Ribeirão Preto, Brazil
  • 5Universidade Estadual de Campinas, Departamento de Ciências do Esporte, Campinas, Brazil
  • 6Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas,Limeira, Brazil
Further Information

Publication History

accepted after revision January 24, 2011

Publication Date:
11 May 2011 (online)

Abstract

We analyzed the usefulness of a semi-tethered field running test (STR) and the relationships between indices of anaerobic power, anaerobic capacity and running performance in 9 trained male sprinters (22.2±2.9 yrs, 176±1 cm, 68.0±9.4 kg). STR involved an all out 120 m run attached to an apparatus that enabled power calculation from force and velocity measures. Subjects also carried out a cycloergometer Wingate Anaerobic Test (WT), an all out 300 m run and had accessed their maximal accumulated oxygen deficit (MAOD) on a treadmill. Peak and mean powers attained in STR (1 720±221 and 1 391±201 W) were greater but significantly related (r=0.82; P<0.01) to those in the WT (808±130 and 603±87 W). In addition, power measures derived from the STR were stronger related to running performance compared to those from the WT (r=0.81–0.94 vs. 0.68–0.84; P<0.05). Relationships between MAOD and most power indices were only weak to moderate. These results support the usefulness of STR for specific power assessment in field running and suggest that anaerobic power and capacity are not related entities, irrespective of having been evaluated using similar or dissimilar exercise modes.

References

  • 1 Bangsbo J. Quantification of anaerobic energy production during intense exercise.  Med Sci Sports Exerc. 1998;  30 47-52
  • 2 Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance.  Med Sci Sports Exerc. 2001;  33 326-333
  • 3 Chia M, Lim JM. Concurrent validity of power output derived from the non-motorized treadmill test in sedentary adults.  Ann Acad Med Singapore. 2008;  37 279-285
  • 4 Dotan R, Bar-Or O. Load optimization for the Wingate Anaerobic Test.  Eur J Appl Physiol. 1983;  51 409-417
  • 5 Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events.  J Sci Med Sport. 2004;  7 302-313
  • 6 Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running.  J Sports Sci. 2005;  23 299-307
  • 7 Falk B, Weinstein Y, Dotan R, Abramson DA, Mann-Segal D, Hoffman JR. A treadmill test of sprint running.  Scand J Med Sci Sports. 1996;  6 259-264
  • 8 Funato K, Yanagiya T, Fukunaga T. Ergometry for estimation of mechanical power output in sprinting in humans using a newly developed self-driven treadmill.  Eur J Appl Physiol. 2001;  84 169-173
  • 9 Gastin PB. Energy system interaction and relative contribution during maximal exercise.  Sports Med. 2001;  31 725-741
  • 10 Green S. A definition and systems view of anaerobic capacity.  Eur J Appl Physiol. 1994;  69 168-173
  • 11 Green S. Measurement of anaerobic work capacities in humans.  Sports Med. 1995;  19 32-42
  • 12 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 13 Heugas AM, Nummela A, Amorim MA, Billat V. Multidimensional analysis of metabolism contributions involved in running track tests.  J Sci Med Sport. 2007;  10 280-287
  • 14 Inbar O, Bar-Or O, Skinner JS. The Wingate Anaerobic Test.. Human Kinetics, Champaign; 1996
  • 15 Jaskólska A, Goossens P, Veenstra B, Jaskólski A, Skinner JS. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.  Int J Sports Med. 1999;  20 192-197
  • 16 Jaskólski A, Veenstra B, Goossens P, Jaskólska A, Skinner JS. Optimal resistance for maximal power during treadmill running.  Sports Med Train Rehabil. 1996;  7 17-30
  • 17 Lim JM, Chia MY. Reliability of power output derived from the nonmotorized treadmill test.  J Strength Cond Res. 2007;  21 993-996
  • 18 Lockie RG, Murphy AJ, Spinks CD. Effects of resisted sled towing on sprint kinematics in field-sport athletes.  J Strength Cond Res. 2003;  17 760-767
  • 19 Maulder PS, Bradshaw EJ, Keogh JWL. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks.  J Strength Cond Res. 2008;  22 1992-2002
  • 20 Medbø JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1998;  64 50-60
  • 21 Minahan C, Chia M, Inbar O. Does power indicate capacity? 30-s Wingate Anaerobic Test vs. maximal accumulated O2 deficit.  Int J Sports Med. 2007;  28 836-843
  • 22 Nevill AM, Ramsbottom R, Nevill ME, Newport S, Williams C. The relative contributions of anaerobic and aerobic energy supply during track 100, 400 and 800 m performance.  J Sports Med Phys Fitness. 2008;  48 138-142
  • 23 Nevill ME, Boobis LH, Brooks S, Williams C. Effect of training on muscle metabolism during treadmill sprinting.  J Appl Physiol. 1989;  67 2376-2382
  • 24 Noordhof DA, de Koning JJ, Foster C. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity?.  Sports Med. 2010;  40 285-302
  • 25 Nummela A, Hämäläinen I, Rusko H. Comparison of maximal anaerobic running tests on a treadmill and track.  J Sports Sci. 2007;  25 87-96
  • 26 Olesen HL, Raabo E, Bangsbo J, Secher NH. Maximal oxygen deficit of sprint and middle distance runners.  Eur J Appl Physiol. 1994;  69 140-146
  • 27 Reis VM, Duarte JA, Espírito-Santo J, Russel AP. Determination of accumulated oxygen deficit during a 400 m run.  J Exerc Physiol. 2004;  7 77-83
  • 28 Reis VM, Silva AJ, Ascenção A, Duarte JA. Inclusion of exercise intensities above the lactate threshold in VO2/running speed regression does not improve the precision of accumulated oxygen deficit estimation in endurance trained runners.  J Sports Sci Med. 2005;  4 455-462
  • 29 Ross RE, Ratamess NA, Hoffman JR, Faigenbaum AD, Kang J, Chilakos A. The effects of treadmill sprint training and resistance training on maximal running velocity and power.  J Strength Cond Res. 2009;  23 385-394
  • 30 Scott CB, Roby FB, Lohman TG, Bunt JC. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.  Med Sci Sports Exerc. 1991;  23 618-624
  • 31 Tong RJ, Bell W, Ball G, Winter EM. Reliability of power output measurements during repeated treadmill sprinting in rugby players.  J Sports Sci. 2001;  19 289-297
  • 32 Vandewalle H, Pérès G, Monod H. Standard anaerobic exercise tests.  Sports Med. 1987;  4 268-289
  • 33 Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations.  Am J Physiol. 2005;  288 R956-R965
  • 34 Weyand PG, Cureton KJ, Conley DS, Sloniger MA, Liu YL. Peak oxygen deficit predicts sprint and middle-distance track performance.  Med Sci Sports Exerc. 1994;  26 1174-1180
  • 35 Winter DA. Biomechanics and Motor Control of Human Movement.. 2nd ed New York: John Wiley & Sons; 1990: 277
  • 36 Zemková E, Hamar D. “All-out” tethered running as an alternative to Wingate anaerobic test.  Kinesiology. 2004;  36 165-172

Correspondence

Prof. Luiz Fernando Paulino Ribeiro

Universidade Estadual de Santa

Cruz

Departamento de Ciências da

Saúde

Rodovia Ilhêus-Itabuna km 16

45662900 Ilhéus

Brazil

Phone: + 55/73/3680 5123

Fax: + 55/73/3680 5123

Email: luizfpr@yahoo.com.br