Subscribe to RSS
DOI: 10.1055/s-0031-1273720
© Georg Thieme Verlag KG Stuttgart · New York
Spontaneous Rapid Resolution of Acute Basal Ganglia Changes in an Untreated Infant with Propionic Acidemia: A Clue to Pathogenesis?
Publication History
received 31.3.2010
accepted 15.2.2011
Publication Date:
28 March 2011 (online)
Abstract
Basal ganglia lesions are a well reported feature of acute decompensation in propionic acidemia; however, their underlying causation still needs to be fully elucidated. We report an 8-month-old infant whose lesions had almost completely resolved radiologically within 3 weeks of initial presentation without specific metabolic management and in light of this, we discuss the current thinking on their pathogenesis.
Key words
propionic acidemia - methyl citrate - cerebral oedema - basal ganglia - Krebs cycle
References
- 1 Arri J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. Am J Neuroradiology. 2000; 21 1502-1509
- 2 Atkuria KR, Cowanb TM, Kwanc T. et al . Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc Natl Acad Sci U S A. 2009; 106 3941-3945
- 3 Bergman AJ, Van Der Knaap MS, Smeitink JA. et al . The BT magnetic resonance imaging and spectroscopy of the brain in propionic acidaemia: clinical and biochemical considerations. Pediatric Research. 1996; 40 404-409
- 4 Bhagavati S, Choi J. Reversible basal ganglia and amygdala lesions in central nervous system lupus. J Rheumatol. 2008; 35 2451-2453
- 5 Bhagavati S, Choi J. Atypical cases of posterior reversible encephalopathy syndrome. Clinical and MRI features. Cerebrovasc Dis. 2008; 26 564-566
- 6 Brismar J, Ozand PT. CT and MRI in disorders of propinate and methylmalonate metabolism. Am J Neuroradiol. 1994; 15 1459-1473
- 7 Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004; 271 3227-3241
- 8 Brunengraber H, Roe CR. Anaplerotic molecules: Current and future. J Inherit Metab Dis. 2006; 29 327-331
- 9 Chan PH, Schmidley JW, Fishman RA. et al . Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology. 1984; 34 315-329
- 10 Chemelli AP, Schocke M, Sperl W. et al . Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging. 2000; 11 596-600
- 11 Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001; 65 1-105
- 12 De Almeida LM, Funchal C, Pelaez Pde L. et al . Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003; 18 207-219
- 13 Dematteis M, Kahane P, Vercueil L. et al . MRI evidence for the involvement of basal ganglia in epileptic seizures: an hypothesis. Epileptic Disord. 2003; 5 161-164
- 14 Dinopoulos A, Cecel KM, Schaprio MB. et al . Brain MRI and MRS findings in infants and children with respiratory chain defects. Neuropediatrics. 2005; 36 290-301
- 15 Fenton WA, Gravel RA, Rosenberg DS. Disorders of propionate and methylmalonic acid metabolism.. In: Scriver CR, Baudette AL, Sly W, Valle D, eds. The metabolic and molecular bases of inherited metabolic disease 8th edn New York: McGraw-Hill; 2001: 2165-2190
- 16 Fontella FU, Pulrolnik V, Gassen E. et al . Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport. 2000; 11 541-544
- 17 Gregerson N. The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl CoA and isovaleryl-CoA. Biochem Med. 1981; 26 20-27
- 18 Haberlant E, Canestrini C, Brunner-Krainz M. et al . Epilepsy in patients with propionic acidemia. Neuropediatrics. 2009; 40 120-125
- 19 Hamilton RL, Haas RH, Nyhan WL. et al . Neuropathology of propionic acidemia: a report of two patients with basal ganglia lesions. J Child Neurol. 1995; 10 25-30
- 20 Hayasaka K, Tada K. Effects of the metabolites of the branched-chain amino acids and cysteamine on the glycine cleavage system. Biochem Int. 1983; 6 225-230
- 21 Heoa JH, Hana SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radical Biology Med. 2005; 39 51-70
- 22 Johnson JA, Le KL, Palacios E. Propionic acidemia: case report and review of neurologic sequelae. Pediatr Neurol. 2009; 40 317-320
- 23 Kang EG, Jeon SJ, Choi SS. et al . Diffusion MR imaging of hypoglycemic encephalopathy. Am J Neuroradiol. 2010; 31 559-564
- 24 Kölker S, Mayatepek E, Hoffmann GF. White matter disease in cerebral organic acid disorders: clinical implications and suggested pathomechanisms. Neuropediatrics. 2002; 33 225-231
- 25 Kolker S, Sauer SW, Surtees RA. et al . The aetiology of neurological complications of organic acidaemias – A role for the blood-brain barrier. J Inherit Metab Dis. 2006; 29 701-704
- 26 Lee JM, Grabb MC, Zipfe G. et al . Brain tissue responses to ischemia. J Clin Invest. 2000; 106 723-731
- 27 Matsumoto R, Haradahira T, Ito H. et al . Measurement of glycine binding site of N-methyl D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11c] methoxybenzyl)phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse. 2007; 61 795-800
- 28 McGuire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab. 2009; 98 173-180
- 29 Nguyen NH, Morland C, Gonzalez SV. et al . Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia: J Neurochem. 2007; 101 806-814
- 30 Nyhan WL, Bay C, Beyer EW. et al . Neurologic non-metabolic presentation of propionic acidemia. Arch Neurol. 1999; 56 1143-1147
- 31 Okun JG, Horster F, Farkas LM. et al . Neurodegeneration in methylmalonic aciduria involves inhibition of complex ii and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002; 277 14674-14680
- 32 Ozand PT, Rahed M, Gascon GG. et al . Unusual presentations of propionic acidemia. Brain Develop. 1994; 16 46-57
- 33 Rigo FK, Pasquetti L, Malfatti CRM. et al . Propionic acid induces convulsions and protein carbonylation in rats. Neurosci Lett. 2006; 408 151-154
- 34 Roig M, Macaya A, Munell F. et al . Acute neurologic dysfunction associated with destructive lesions of the basal ganglia: a benign form of infantile bilateral striatal necrosis. J Pediatr. 1990; 117 578-581
- 35 Roig M, Calopa M, Rovira A. et al . Bilateral striatal lesions in childhood. Pediatr Neurol. 1993; 9 349
- 36 Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991; 87 384-390
- 37 Sass JO, Hofmann M, Skladal D. et al . Propionic acidemia revisited: A workshop report. Clin Pediatr. 2004; 43 837-843
- 38 Sauer SW, Opp S, Mahringer A. et al . Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexushim. Biophys Acta. 2010; 1802 552-560
- 39 Scholl-Burgi S, Korman SH, Applegarth DA. et al . The relation of cerebrospinal fluid and plasma glycine levels in propionic acidaemia, a ‘ketotic hyperlycinaemia’. J Inherit Metab Dis. 2008; 31 395-398
- 40 Scholl-Burgi S, Heberlandt E, Gotwald T. et al . Stroke like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics. 2009; 40 76-81
- 41 Scholl-Burgi S, Sass JO, Heinz-Erian P. Changes in plasma amino acid concentration with increasing age in patients with propionic acidemia. Amino Acids. 2010; 38 1473-1481
- 42 Schwab MA, Sauer SW, Okun JG. et al . Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006; 398 107-112
- 43 Singhi P, Subramanian C, Jain V. et al . Reversible brain lesions in childhood hypertension. acta pædiatr. 2002; 91 1005-1007
- 44 Stumpf DA, McAfee J, Parks JK. et al . Propionate inhibition of succinate:CoA ligase (GDP) and the citric acid cycle in mitochondria. Pediatr Res. 1980; 14 1127-1131
- 45 Tada K, Kure S. Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology. J Inherit Metab Dis. 1993; 16 691-703
- 46 Wolf B, Hsia YE, Sweetman L. et al . Propionic acidemia: a clinical update. J Pediatr. 1981; 99 835-846
- 47 Walter JH, Wraith JE, Cleary MA. Absence of acidosis in the initial presentation of propionic acidaemia. Arch Dis. 1995; 72 F197
Correspondence
Alexander Broomfield
Department of Metabolic
Disease
Ormond Street Hospital
Great Ormond Street
London WC1N 3JH
United Kingdom
Phone: +44/207/405 9200
Fax: +44/207/829 8643
Email: BroomA@gosh.nhs.uk