Subscribe to RSS
DOI: 10.1055/s-0031-1277155
© Georg Thieme Verlag KG Stuttgart · New York
Involvement of Nitric Oxide in Corticosterone Release and Glucose Metabolism in Food Deprived Rats
Publication History
received 04.10.2010
accepted 05.04.2011
Publication Date:
09 May 2011 (online)

Abstract
This study was performed to investigate the involvement of nitric oxide (NO) in corticosterone, endpoint product of hypothalamo-pituitary-adrenal (HPA) axis activation, and metabolic responses to 3 days of food deprivation. To investigate this aim, we used a nonspecific inhibitor of nitric oxide synthases, N-nitro-L-arginine methyl ester (L-NAME). In food deprived group we have noted a significant increase in plasma corticosterone concentration accompanied by a significant depletion in hepatic glycogen content with concomitant increase in glycogen phosphorylase (GP) activity by 63.72%, key enzyme of glycogenolysis and decrease in hexokinase (HK) activity by 25.16%, leading to significant decrease in glucose concentration. However, L-NAME administration in food deprived rats decreased slightly corticosterone level and GP activity (16.39%) and increased HK activity (11.26%) as compared to food deprived group. Considering these results, we can deduce that in food deprivation nitric oxide is involved in the regulation of corticosterone release and in glucose metabolic responses via glycogenolysis activation by the stimulation of GP activity and the inhibition of HK activity. However, more studies are necessary to further clarify the mechanisms by which NO induces these responses.
Key words
food deprivation - nitric oxide - corticosterone - glycogen phosphorylase - hexokinase
References
- 1
Koretz RL.
Should patients with cancer be offered nutritional support: does the benefit outweigh
the burden?.
Eur J Gastroenterol Hepatol.
2007;
19
379-382
MissingFormLabel
- 2
Beishuizen A, Thijs LG.
Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis.
J Endotoxin Res.
2003;
9
3-24
MissingFormLabel
- 3
Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L.
A single brain-derived neurotrophic factor injection modifies hypothalamo-pituitary-adrenocortical
axis activity in adult male rats.
Mol Cell Neurosci.
2004;
27
280-295
MissingFormLabel
- 4
Rezg R, Mornagui B, El-Arbi M, Kamoun A, El-Fazaa S, Gharbi N.
Effect of subchronic exposure to malathion on glycogen phosphorylase and hexokinase
activities in rat liver using native PAGE.
Toxicology.
2006;
223
9-14
MissingFormLabel
- 5
Schmidt HH, Walter U.
NO at work.
Cell.
1994;
78
919-925
MissingFormLabel
- 6
Raber J, Koob GF, Bloom FE.
Interleukin-2 (IL-2) induces corticotropin-releasing factor (CRF) release from the
amygdala and involves a nitric oxide-mediated signaling; comparison with the hypothalamic
response.
J Pharmacol Exp Ther.
1995;
272
815-824
MissingFormLabel
- 7
Akasaka S, Nomura M, Nishii H, Fujimoto N, Ueta Y, Tsutsui M, Shimokawa H, Yanagihara N, Matsumoto T.
The hypothalamo-pituitary axis responses to lipopolysaccharide-induced endotoxemia
in mice lacking inducible nitric oxide synthase.
Brain Res.
2006;
1089
1-9
MissingFormLabel
- 8
Adams ML, Nock B, Truong R, Cicero TJ.
Nitric oxide control of steroidogenesis: endocrine effects of NG-nitro-L-arginine
and comparisons to alcohol.
Life Sci.
1992;
50
PL35-PL40
MissingFormLabel
- 9
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G.
Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates.
J Nutr Biochem.
2006;
17
571-588
MissingFormLabel
- 10
Sugita H, Kaneki M, Tokunaga E, Sugita M, Koike C, Yasuhara S, Tompkins RG, Martyn JA.
Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin
resistance.
Am J Physiol Endocrinol Metab.
2002;
282
E386-E394
MissingFormLabel
- 11
Stadler J, Barton D, Beil-Moeller H, Diekmann S, Hierholzer C, Erhard W, Heidecke CD.
Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea
synthesis for L-arginine.
Am J Physiol.
1995;
268
G183-G188
MissingFormLabel
- 12
Borgs M, Bollen M, Keppens S, Yap SH, Stalmans W, Vanstapel F.
Modulation of basal hepatic glycogenolysis by nitric oxide.
Hepatology.
1996;
23
1564-1571
MissingFormLabel
- 13
Sprangers F, Sauerwein HP, Romijn JA, van Woerkom GM, Meijer AJ.
Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes.
Biochem J.
1998;
330
(Pt 2)
1045-1049
MissingFormLabel
- 14
Mornagui B, Grissa A, Duvareille M, Gharib C, Kamoun A, El-Fazaa S, Gharbi N.
Vasopressin and nitric oxide synthesis after three days of water or food deprivation.
Acta Biol Hung.
2006;
57
1-11
MissingFormLabel
- 15
Kamiya A, Iwase S, Michikami D, Fu Q, Mano T, Kitaichi K, Takagi K.
Increased vasomotor sympathetic nerve activity and decreased plasma nitric oxide release
after head-down bed rest in humans: disappearance of correlation between vasoconstrictor
and vasodilator.
Neurosci Lett.
2000;
281
21-24
MissingFormLabel
- 16
Tracey WR, Tse J, Carter G.
Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in
rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors.
J Pharmacol Exp Ther.
1995;
272
1011-1015
MissingFormLabel
- 17
Lott JA, Turner K.
Evaluation of Trinder's glucose oxidase method for measuring glucose in serum and
urine.
Clin Chem.
1975;
21
1754-1760
MissingFormLabel
- 18 Good CA, Krames H, Somogyi M. Method in enzymology VII. Chemical procedures for analysis of polysaccharides.. New York: Academic Press; 1933
MissingFormLabel
- 19
Pasteur N, Pasteur GBF, Catalon J, Britton-Davidion J.
Manuel technique de génétique par électrophorèse des Protéines.
1987;
57
MissingFormLabel
- 20
Bradford MM.
A rapid and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding.
Anal Biochem.
1976;
72
248-254
MissingFormLabel
- 21 Gennady M. ed Handbook of detection of enzymes on electrophoretic gels.. CRC Press; 1994: 112-135
MissingFormLabel
- 22
Schwartz MW, Dallman MF, Woods SC.
Hypothalamic response to starvation: implications for the study of wasting disorders.
Am J Physiol.
1995;
269
R949-R957
MissingFormLabel
- 23
Dallman MF, Strack AM, Akana SF, Bradbury MJ, Hanson ES, Scribner KA, Smith M.
Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.
Front Neuroendocrinol.
1993;
14
303-347
MissingFormLabel
- 24
Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi S, Chu A, Horsley C, Levin N, Meijer O, Soriano LR, Strack AM, Viau V.
Starvation: early signals, sensors, and sequelae.
Endocrinology.
1999;
140
4015-4023
MissingFormLabel
- 25
Lopez-Figueroa MO, Day HE, Akil H, Watson SJ.
Nitric oxide in the stress axis.
Histol Histopathol.
1998;
13
1243-1252
MissingFormLabel
- 26
Rettori V, Fernandez-Solari J, Mohn C, Zorrilla Zubilete MA, de la Cal C, Prestifilippo JP, De Laurentiis A.
Nitric oxide at the crossroad of immunoneuroendocrine interactions.
Ann NY Acad Sci.
2009;
1153
35-47
MissingFormLabel
- 27
Mohn CE, Fernandez-Solari J, De Laurentiis A, Prestifilippo JP, de la Cal C, Funk R, Bornstein SR, McCann SM, Rettori V.
The rapid release of corticosterone from the adrenal induced by ACTH is mediated by
nitric oxide acting by prostaglandin E2.
Proc Natl Acad Sci U S A.
2005;
102
6213-6218
MissingFormLabel
- 28
Vila R, Adan C, Grasa MM, Masanes RM, Esteve M, Cabot C, Fernandez-Lopez JA, Remesar X, Alemany M.
Effect of food deprivation on rat plasma estrone fatty acid esters.
Diabetes Obes Metab.
1999;
1
353-356
MissingFormLabel
- 29
Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW.
Glyceroneogenesis and the triglyceride/fatty acid cycle.
J Biol Chem.
2003;
278
30413-30416
MissingFormLabel
- 30
Finn PF, Dice JF.
Proteolytic and lipolytic responses to starvation.
Nutrition.
2006;
22
830-844
MissingFormLabel
- 31
Taylor AW, Cary S, McNulty M, Garrod J, Secord DC.
Effects of food restriction and exercise upon the deposition and mobilization of energy
stores in the rat.
J Nutr.
1974;
104
218-222
MissingFormLabel
- 32
Farghali H, Hodis J, Kutinova-Canova N, Potmesil P, Kmonickova E, Zidek Z.
Glucose release as a response to glucagon in rat hepatocyte culture: involvement of
NO signaling.
Physiol Res.
2008;
57
569-575
MissingFormLabel
- 33
Bornstein SR, Chrousos GP.
Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation
of the adrenal cortex: neural and immune inputs.
J Clin Endocrinol Metab.
1999;
84
1729-1736
MissingFormLabel
- 34
Di Giulio RT, Scanlon PF.
Effects of cadmium ingestion and food restriction on energy metabolism and tissue
metal concentrations in mallard ducks (Anas platyrhynchos).
Environ Res.
1985;
37
433-444
MissingFormLabel
Correspondence
B. Mornagui
Laboratoire de Physiologie des
Agressions
Département de Biologie
Faculté des Sciences de Tunis
Campus Universitaire
2092 El Manar
Tunisia
Phone: +216/71/872 600
Fax: +216/71/871 666
Email: bessem.mornagui@fst.rnu.tn