Horm Metab Res 2011; 43(7): 464-469
DOI: 10.1055/s-0031-1277226
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Aldosterone Perturbs Adiponectin and PAI-1 Expression and Secretion in 3T3-L1 Adipocytes

P. Li1 , 2 , [*] , X.-N. Zhang2 , [*] , C.-M. Pan2 , F. Sun2 , D.-L. Zhu1 , H.-D. Song2 , M.-D. Chen2
  • 1Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, P. R. China
  • 2Ruijin Hospital, Shanghai Institute of Endocrinology, State Key Laboratory of Medical Genomics, Molecular Medicine Center, Shanghai Jiao Tong University (SJTU) School of Medicine, P. R. China
Further Information

Publication History

received 20.02.2011

accepted 19.04.2011

Publication Date:
10 June 2011 (online)

Abstract

Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease.

References

  • 1 Williams GH. Aldosterone biosynthesis, regulation, and classical mechanism of action.  Heart Fail Rev. 2006;  10 7-13
  • 2 Krug AW, Ehrhart-Bornstein M. Aldosterone and metabolic syndrome: is increased aldosterone in metabolic syndrome patients an additional risk factor?.  Hypertension. 2008;  51 1252-1258
  • 3 Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G, Mulatero P. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism.  J Clin Endocrinol Metab. 2006;  91 454-459
  • 4 Connell JM, MacKenzie SM, Freel EM, Fraser R, Davies E. A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function.  Endocr Rev. 2008;  29 133-154
  • 5 Rossi G, Boscaro M, Ronconi V, Funder JW. Aldosterone as a cardiovascular risk factor.  Trends Endocrinol Metab. 2005;  16 104-107
  • 6 Després JP, Lemieux I. Abdominal obesity and metabolic syndrome.  Nature. 2006;  144 881-887
  • 7 Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS)1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes.  Endocrinology. 2009;  150 1662-1669
  • 8 Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice.  Cardiovasc Res. 2009;  84 164-172
  • 9 Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines.  Circulation. 2008;  117 2253-2261
  • 10 Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Kazuyuki T. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.  J Clin Invest. 2006;  116 1784-1792
  • 11 Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes, and consequences.  Arterioscler Thromb Vasc Biol. 2006;  26 2200-2207
  • 12 Li RY, Song HD, Shi WJ, Hu SM, Yang YS, Tang JF, Chen MD, Chen JL. Galanin inhibits leptin expression and secretion in rat adipose tissue and 3T3-L1 adipocytes.  J Mol Endocrinol. 2004;  33 11-19
  • 13 Yuan GY, Chen X, Ma QY, Qiao J, Li RY, Li XS, Li SX, Tang JF, Zhou LB, Song HD, Chen MD. C-reactive protein inhibits adiponectin gene expression and secretion in 3T3-L1 adipocytes.  J Endocrinol. 2007;  194 275-281
  • 14 Huang W, Xu C, Kahng KW, Noble NA, Border WA, Huang Y. Aldosterone and TGF-β1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells.  Am J Physiol Renal Physiol. 2008;  294 F1287-F1295
  • 15 Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes A potential pathogenetic link between obesity and cardiovascular disease.  Circulation. 1996;  93 106-110
  • 16 Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE. Thiazolidinediones: effects on insulin resistance and the cardiovascular system.  Br J Pharmacol. 2008;  153 636-645
  • 17 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura L, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50 2094-2099
  • 18 Hong HK, Cho YM, Park KH, Lee CT, Lee HK, Park KS. Peroxisome proliferator-activated receptor gamma mediated inhibition of plasminogen activator inhibitor type 1 production and proliferation of human umbilical vein endothelial cells.  Diabetes Res Clin Pract. 2003;  62 1-8
  • 19 Cawthorn WP, Sethi JK. TNF-α and adipocyte biology.  FEBS Lett. 2008;  582 117-131
  • 20 Lyon CJ, Hsueh WA. Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease.  Am J Med. 2003;  115 S62-S68
  • 21 Trujillo ME, Scherer PE. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome.  J Intern Med. 2005;  257 167-175
  • 22 Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, Lam TH, Lam KS. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study.  Hypertension. 2007;  49 1455-1461
  • 23 Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson JE, Ehrlich J, Eckel RH, Rewers M. Low plasma adiponectin levels predict progression of coronary artery calcification.  Circulation. 2005;  111 747-753
  • 24 Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.  Nat Med. 1996;  2 800-803
  • 25 Chun TY, Pratt JH. Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes.  Mol Cell Endocrinol. 2005;  239 55-61
  • 26 Urbanet R, Pilon C, Calcagno A, Peschechera A, Hubert EL, Giacchetti G, Gomez-Sanchez C, Mulatero P, Toffanin M, Sonino N, Zennaro MC, Giorgino F, Vettor R, Fallo F. Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism.  J Clin Endocrinol Metab. 2010;  95 4037-4042
  • 27 He G, Pedersen SB, Bruun JM, Lihn AS, Richelsen B. Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1 production in human adipose tissue in vitro.  Horm Metab Res. 2003;  35 18-23
  • 28 Yamashita R, Kikuchi T, Mori Y, Aoki K, Kaburagi Y, Yasuda K, Sekihara H. Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade.  Endocr J. 2004;  51 243-251
  • 29 Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor.  Science. 1987;  237 268-275
  • 30 Hoppmann J, Perwitz N, Meier B, Fasshauer M, Hadaschik D, Lehnert H, Klein J. The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses.  J Endocrinol. 2010;  204 153-164
  • 31 Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-González G. Role of aldosterone and angiotension II in insulin resistance: an update.  Clin Endocrinol (Oxf). 2009;  71 1-6

1 These authors contributed equally to this work.

Correspondence

H.-D. Song
M.-D. Chen

Ruijin Hospital

Shanghai Institute of

Endocrinology

State Key Laboratory of Medical

Genomics

Molecular Medicine Center

Shanghai Jiao Tong University

(SJTU) School of Medicine

Ruijin Road 2

Shanghai 200025

P. R. China

Phone: + 86/21/6431 55 87

Fax: + 86/21/6467 36 39

Email: huaidong_s1966@163.com

Email: mingdaochensh@yahoo.com