Semin Hear 2011; 32(2): 203-211
DOI: 10.1055/s-0031-1277243
© Thieme Medical Publishers

Tinnitus and Hearing Loss and Changes in Hippocampus

Richard Salvi1 , Berthold Langguth2 , Suzanne Kraus1 , Michael Landgrebe2 , Brian Allman1 , Dalian Ding1 , Edward Lobarinas1
  • 1Center for Hearing and Deafness and Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, New York
  • 2Department of Psychiatry and Psychotherapy, Interdisciplinary Tinnitus Clinic, University of Regensburg, Regensburg, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Juli 2011 (online)

ABSTRACT

Approximately 12 to 14% of adults experience tinnitus and prevalence estimates for tinnitus in children range from 12 to 37% in those with normal hearing and up to 66% with those with hearing loss. Approximately 1% of patients suffer from debilitating tinnitus that requires clinical treatment or intervention. The neural mechanisms responsible for tinnitus, however, remain elusive. Because tinnitus is often associated with cochlear hearing loss, the phantom sound of tinnitus was traditionally believed to originate in the cochlea. More recently, modern brain imaging methods employing positron emission tomography have identified regions in the central auditory pathway (auditory cortex, medial geniculate body) and limbic system (hippocampus) that are activated when patients with somatic tinnitus voluntarily change the loudness of the phantom sound by moving the face, jaw, or upper torso. Somatic tinnitus appears to develop as a function of somatosensory system invasion of the deafferented (deafened) regions of the auditory cortex. Additionally, the involvement of the hippocampus in tinnitus gains further credence from structural imaging studies that reveal a significant decrease in hippocampal gray matter in tinnitus patients. The hippocampus, a structure involved with memory, mood, and spatial navigation, is a major site of neurogenesis in the adult brain. New data suggest that unilateral noise exposure resulting in deafness significantly suppresses the birth of newborn neurons in the hippocampus and leads to memory impairment in noise-exposed animals.

REFERENCES

  • 1 Epidemiology of tinnitus, Medical Research Council's Institute of Hearing Research.  Ciba Found Symp. 1981;  85 16-34
  • 2 Cooper Jr J C. Health and Nutrition Examination Survey of 1971-75: Part II. Tinnitus, subjective hearing loss, and well-being.  J Am Acad Audiol. 1994;  5 (1) 37-43
  • 3 Shetye A, Kennedy V. Tinnitus in children: an uncommon symptom?.  Arch Dis Child. 2010;  95 (8) 645-648
  • 4 Coelho C B, Sanchez T G, Tyler R S. Tinnitus in children and associated risk factors.  Prog Brain Res. 2007;  166 179-191
  • 5 Chadha NK, Gordon KA, James AL, Papsin BC. Tinnitus is prevalent in children with cochlear implants.  Int J Pediatr Otorhinolaryngol. 2009;  73 (5) 671-675
  • 6 Peifer KJ, Rosen GP, Rubin AM. Tinnitus: etiology and management.  Clin Geriatr Med. 1999;  15 (1) 193-204 viii
  • 7 Nicolas-Puel C, Faulconbridge RL, Guitton M, Puel JL, Mondain M, Uziel A. Characteristics of tinnitus and etiology of associated hearing loss: a study of 123 patients.  Int Tinnitus J. 2002;  8 (1) 37-44
  • 8 Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R. Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate.  Hear Res. 1997;  107 (1-2) 67-82
  • 9 Kiang NY, Moxon EC, Levine RA. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural hearing loss.  Ciba Found Symp. 1970;  241-273
  • 10 Coad ML, Lockwood A, Salvi R, Burkard R. Characteristics of patients with gaze-evoked tinnitus.  Otol Neurotol. 2001;  22 (5) 650-654
  • 11 House JW, Brackmann DE. Tinnitus: surgical treatment.  Ciba Found Symp. 1981;  85 204-216
  • 12 Rajan R, Irvine DR, Wise LZ, Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex.  J Comp Neurol. 1993;  338 (1) 17-49
  • 13 Salvi RJ, Lockwood AH, Burkard RF. Neural plasticity and tinnitus. In: Tyler R, ed. Tinnitus Handbook. San Diego, CA: Singular; 2000: 123-148
  • 14 Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage.  Hear Res. 2000;  147 (1-2) 261-274
  • 15 Adjamian P, Sereda M, Hall DA. The mechanisms of tinnitus: perspectives from human functional neuroimaging.  Hear Res. 2009;  253 (1-2) 15-31
  • 16 Simmons R, Dambra C, Lobarinas E, Stocking C, Salvi R. Head, neck, and eye movements that modulate tinnitus.  Semin Hear. 2008;  29 (4) 361-370
  • 17 Levine RA. Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis.  Am J Otolaryngol. 1999;  20 (6) 351-362
  • 18 Lockwood AH, Salvi RJ, Coad ML et al.. The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities.  Cereb Cortex. 1999;  9 (1) 65-76
  • 19 Langguth B, Eichhammer P, Kreutzer A et al.. The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus—first results from a PET study.  Acta Otolaryngol Suppl. 2006;  556 (556) 84-88
  • 20 Mühlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus.  Proc Natl Acad Sci U S A. 1998;  95 (17) 10340-10343
  • 21 Aitkin LM, Dickhaus H, Schult W, Zimmermann M. External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions.  J Neurophysiol. 1978;  41 (4) 837-847
  • 22 Weinberg RJ, Rustioni A. A cuneocochlear pathway in the rat.  Neuroscience. 1987;  20 (1) 209-219
  • 23 Wepsic JG. Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus.  Exp Neurol. 1966;  15 (3) 299-318
  • 24 Shore S, Zhou J, Koehler S. Neural mechanisms underlying somatic tinnitus.  Prog Brain Res. 2007;  166 107-123
  • 25 Allman BL, Keniston LP, Meredith MA. Adult deafness induces somatosensory conversion of ferret auditory cortex.  Proc Natl Acad Sci U S A. 2009;  106 (14) 5925-5930
  • 26 Jastreboff PJ. Tinnitus retraining therapy.  Prog Brain Res. 2007;  166 415-423
  • 27 Pedemonte M, Peña JL, Velluti RA. Firing of inferior colliculus auditory neurons is phase-locked to the hippocampus theta rhythm during paradoxical sleep and waking.  Exp Brain Res. 1996;  112 (1) 41-46
  • 28 Snyder JS, Choe JS, Clifford MA et al.. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice.  J Neurosci. 2009;  29 (46) 14484-14495
  • 29 De Ridder D, Fransen H, Francois O, Sunaert S, Kovacs S, Van De Heyning P. Amygdalohippocampal involvement in tinnitus and auditory memory.  Acta Otolaryngol Suppl. 2006;  (556) 50-53
  • 30 Landgrebe M, Langguth B, Rosengarth K et al.. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas.  Neuroimage. 2009;  46 (1) 213-218
  • 31 Paul AK, Lobarinas E, Simmons R et al.. Metabolic imaging of rat brain during pharmacologically-induced tinnitus.  Neuroimage. 2009;  44 (2) 312-318
  • 32 Lanting CP, De Kleine E, Bartels H, Van Dijk P. Functional imaging of unilateral tinnitus using fMRI.  Acta Otolaryngol. 2008;  128 (4) 415-421
  • 33 Colla M, Kronenberg G, Deuschle M et al.. Hippocampal volume reduction and HPA-system activity in major depression.  J Psychiatr Res. 2007;  41 (7) 553-560
  • 34 de Geus EJ, van't Ent D, Wolfensberger SP et al.. Intrapair differences in hippocampal volume in monozygotic twins discordant for the risk for anxiety and depression.  Biol Psychiatry. 2007;  61 (9) 1062-1071
  • 35 Shulman A. A final common pathway for tinnitus—the medial temporal lobe system.  Int Tinnitus J. 1995;  1 (2) 115-126
  • 36 Besser R, Krämer G, Thümler R, Bohl J, Gutmann L, Hopf HC. Acute trimethyltin limbic-cerebellar syndrome.  Neurology. 1987;  37 (6) 945-950
  • 37 Kreyberg S, Torvik A, Bjørneboe A, Wiik-Larsen W, Jacobsen D. Trimethyltin poisoning: report of a case with postmortem examination.  Clin Neuropathol. 1992;  11 (5) 256-259
  • 38 Corkin S, Amaral DG, González RG, Johnson KA, Hyman BTHM. H. M.'s medial temporal lobe lesion: findings from magnetic resonance imaging.  J Neurosci. 1997;  17 (10) 3964-3979
  • 39 Boutros NN, Mears R, Pflieger ME, Moxon KA, Ludowig E, Rosburg T. Sensory gating in the human hippocampal and rhinal regions: regional differences.  Hippocampus. 2008;  18 (3) 310-316
  • 40 Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice.  Development. 2003;  130 (2) 391-399
  • 41 van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice.  Proc Natl Acad Sci U S A. 1999;  96 (23) 13427-13431
  • 42 Yang G, Lobarinas E, Zhang L et al.. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats.  Hear Res. 2007;  226 (1-2) 244-253
  • 43 Kraus KS, Mitra S, Jimenez Z et al.. Noise trauma impairs neurogenesis in the rat hippocampus.  Neuroscience. 2010;  167 (4) 1216-1226
  • 44 Hallam RS, McKenna L, Shurlock L. Tinnitus impairs cognitive efficiency.  Int J Audiol. 2004;  43 (4) 218-226
  • 45 Rossiter S, Stevens C, Walker G. Tinnitus and its effect on working memory and attention.  J Speech Lang Hear Res. 2006;  49 (1) 150-160
  • 46 Andersson G, McKenna L. The role of cognition in tinnitus.  Acta Otolaryngol Suppl. 2006;  (556) 39-43
  • 47 Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory.  Neuroscience. 2005;  130 (4) 843-852
  • 48 Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function.  Hippocampus. 2006;  16 (3) 296-304
  • 49 Bartel-Friedrich S, Broecker Y, Knoergen M, Koesling S. Development of fMRI tests for children with central auditory processing disorders.  In Vivo. 2010;  24 (2) 201-209
  • 50 Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus.  Neuron. 2010;  66 (6) 819-826
  • 51 Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity.  Neurology. 1998;  50 (1) 114-120

Richard SalviPh.D. 

Center for Hearing and Deafness, University at Buffalo

Buffalo, NY 14214

eMail: salvi@buffalo.edu