Subscribe to RSS
DOI: 10.1055/s-0031-1278698
© Georg Thieme Verlag Stuttgart · New York
Plaquekontrolle mit Chlorhexidin – Spüllösungen, Gele, Lacke, Chips
Plaque Control by Chlorhexidine – Mouthrinses, Gels, Varnishes, ChipsPublication History
Publication Date:
02 May 2011 (online)
Plaquekontrolle ist conditio sine qua non zur Prävention von Karies, Gingivitis und Parodontitis. Die Plaquekontrolle erfolgt grundsätzlich mechanisch, rein chemisch oder kombiniert mechanisch und chemisch. Chlorhexidin hat sich seit Jahrzehnten als „Goldstandard“ zur chemischen bzw. mechanisch-chemischen Plaquekontrolle in Form von Spüllösungen, Gelen und Lacken erwiesen. Aus Sicht der Sensibilität kariogener und parodontopathogener Keime in vitro sind beide Keimgruppen im Wirkspektrum des Chlorhexidins eingeschlossen. Die Rekolonisierung von Aktinomyzeten und Streptokokken in der supragingivalen Plaque dürfte empfindlich gestört werden und unter den gramnegativen Bakterien insbesondere die von Porphyromonas gingivalis in der subgingivalen Plaque. Auch Staphylococcus aureus (Implantate) und Candida albicans (Prothesenstomatitis) erwiesen sich als sensibel gegenüber Chlorhexidin. Mit dem PerioChip® werden insbesondere Gramnegative und S. aureus erfasst. Gele sind Mundspüllösungen in ihrer Wirkung überlegen und 0,1 %ige und 0,2 %ige Mundspüllösungen gleichwertig.
Control of biofilms is fundamental to prevent caries, gingivitis and periodontitis. Dental biofilms were usually controlled inadequately by mechanical means. Therefore, agents that prevent the formation of biofilms, disrupt biofilms or modify the biofilm biochemistry and ecology were developed. Chlorhexidine is the most thoroughly studied and the most efficacious antibiofilm and antigingivitis agent, and represents a gold standard against which the potency of other antibiofilm agents is compared. Vehicles for administration of chlorhexidine to the oral cavity are mouthrinses, gels and varnishes. The majority of cariogenic and periodontopathogenic germs were susceptible against chlorhexidine formulations in vitro. The recolonisation of actinomyces and streptococci in supragingival plaque should be disturbed and furthermore, the recolonisation of gramnegative germs in the subgingival plaque especially P. gingivalis. S. aureus (implants) and C. albicans (stomatitis) were inhibited by chlorhexidine as well. Gramnegative germs, especially P. gingivalis, were inhibited by the PerioChip®. Gels could be demonstrated to be more effective than mouthrinses and the effectiveness of 0,1 % and 0,2 % mouthrinses were comparable.
Schlüsselwörter
Chlorhexidin - Wirkungsweise - Verabreichungsformen - Sensibles Keimspektrum
Key words
Chlorhexidine - Mode of Action - Vehicles - Susceptibility among Germs
Literatur
- 1 Arweiler B N. Biofilm-Management mit antibakteriellen Mundspüllösungen. DZZ. 2007; 62 295-300
- 2 Bauer H, Kneist S. Säureproduktion und Säuretoleranz oraler Aktinomyzeten. DZZ. 2005; 1 44-47
- 3 Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005; 33 248-255
- 4 Beighton D. Microflora of early childhood caries in relation to socio-demographic variables. Oralprophylaxe Kinderzahnheilkd. 2010; 32 89-92
- 5 Burne A R, Marquis M E. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000; 193 1-6
- 6 Byers L H et al.. Utilization of sialic acid by viridans streptococi. J Dent Res. 1996; 75 1564-1571
- 7 Davies E G et al.. 1:6-di 4Ž-chlorophenyl-diguanidohexane („Hibitane“). Laboratory investigation of a new antibacterial agent of high potency. Br J Pharmacol. 1954; 9 192-196
- 8 De Soet J J et al.. Strain-related acid production by oral streptococci. Caries Res. 2000; 34 486-490
- 9 Dirksen R T et al.. The pH of carious cavities. 1. The effect of glucose and phosphate buffer on cavity pH. Arch Oral Biol. 1962; 7 49-58
- 10 Hamada S, Slade D H. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980; 44 331-384
- 11 Kleinberg I. A mixed-bacteria ecological approach to understand the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific – plaque hypothesis. Crit Rev Oral Biol Med. 2002; 13 108-125
- 12 Kneist S et al.. Zur Bedeutung von S. sobrinus für die Kariesentwicklung bei Kindern. Oralprophylaxe Kinderzahnheilkd. 2004; 26 24-28
- 13 Kneist S. Chlorhexidin in der zahnärztlichen Praxis – Möglichkeiten und Grenzen. ZMK. 2006; 11 720-730
- 14 Kneist S et al.. Therapiebegleitende Maßnahmen zur Kontrolle des Karies- und Demineralisationsrisikos bei kieferorthopädischer Behandlung. ZWR. 2008; 117 218-226
- 15 Kneist S et al.. Diversity of Lactobacillus species in deep carious lesions of primary molars. Europ Arch Pediatr Dent. 2010; 11 181-186
- 16 Kolenbrander E P. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. 2000; 54 413-437
- 17 Loesche J W. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986; 353-380
- 18 Löe H, Rindom-Schiøtt C. The effect of suppression of the oral microflora upon the formation of dental plaque. In: Hugh WD, Hrsg. „Dental plaque“. Edinburg: Livingstone; 1970: 247-256
- 19 Loyola-Rodriguez P J et al.. Distribution of Streptococcus mutans and Streptococcus sobrinus in saliva of Mexican preschool caries-free and caries-active children by microbial and molecular (PCR) assays. J Clin Pediatr Dent. 2008; 32 121-126
- 20 Marsh P, Martin V M. Orale Mikrobiologie. Aufl. Stuttgart: Thieme; 2003. 4
- 21 Marsh D P. Dental plaque as a microbial biofilm. Caries Res. 2004; 38 204-211
- 22 Marsh D P. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 2006; 6 14
- 23 Netuschil L et al.. Auswahl und Anwendung von oralen Chemoprophylaktika. DFZ. 2002; 3 1-5
- 24 Rijkom van M H et al.. A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. Caries Res. 1996; 75 790-795
- 25 Scheie A A, Petersen C F. Antimicrobials in caries control. In: Fejerskov O, Kidd E, Hrsg. Dental Caries. The Disease and its Clinical Management. Oxford: Blackwell Munksgaard; 2008: 265-277
- 26 Scholz V. Weniger häufig mikrobiell bedingte Komplikationen am Implantat durch Chlorhexidin-Arzneimittel. ZWR. 2010; 119 44-45
- 27 Schröder W F. Anwendung von Chlorhexidin-Spüllösungen. Inaktivierung des Chlorhexidins durch anionische Netzmittel in Mundpflegemitteln. Oralprophylaxe. 2000; 22 203-205
- 28 Socransky S S et al.. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998; 25 134-144
- 29 Takahashi N, Yamada T. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii. Oral Microbiol Immunol. 1996; 14 43-48
- 30 Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 2008; 42 409-418
- 31 Tanzer M J et al.. The microbiology of primary dental caries in humans. J Dent Educ. 2001; 65 1028-1037
- 32 Van Houte J et al.. Mutans streptococci and non-mutans streptococci at low pH and in vitro acidogenic potential of dental plaque in two different areas of the human dentition. J Dent Res. 1991; 70 1503-1507
- 33 Van Ruyven O F et al.. Relationship among mutans streptococci, ,low-pH' bacteria und iodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res. 2000; 79 778-784
- 34 Yaling L et al.. Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial acidurity and capacity to modulate pH homeostasis. Microbiol Res. 2006; 161 304-310
Korrespondenzadresse
Prof. Susanne Kneist
Universitätsklinikum Jena Medizinische Fakultät Zentrum für Zahn-, Mund- und Kieferheilkunde (Geschäftsführender Direktor Prof. Dr. H. Küpper) Biologisches Forschungslabor
Bachstraße 18
07740 Jena
Email: Susanne.Kneist@med.uni-jena.de