Semin Respir Crit Care Med 2011; 32(3): 245-253
DOI: 10.1055/s-0031-1279822
© Thieme Medical Publishers

Pathogenesis of Lung Vasculitis

Patrick H. Nachman1 , Ashley G. Henderson2
  • 1University of North Carolina Kidney Center, Chapel Hill, North Carolina
  • 2Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
Further Information

Publication History

Publication Date:
14 June 2011 (online)

ABSTRACT

Vasculitides that affect the lung represent a diverse group of diseases with various systemic clinical manifestations, and include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA, formerly Wegener granulomatosis), Churg-Strauss syndrome (CSS), and anti-glomerular basement membrane (anti-GBM) disease (Goodpasture syndrome). The etiologies of these diseases remain largely unknown. Although the pathogenic mechanisms of each differ, these diseases overlap by the presence of anti-neutrophil cytoplasmic autoantibodies in the vast majority of patients with MPA and GPA, and a substantial minority of patients with CSS and anti-GBM disease. This article reviews the current understanding of the pathogenesis of these four disease entities.

REFERENCES

  • 1 Falk R J, Jennette J C. ANCA disease: where is this field heading?.  J Am Soc Nephrol. 2010;  21 (5) 745-752
  • 2 Sinico R A, Di Toma L, Maggiore U et al.. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg-Strauss syndrome.  Arthritis Rheum. 2005;  52 (9) 2926-2935
  • 3 Sablé-Fourtassou R, Cohen P, Mahr A French Vasculitis Study Group et al. Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome.  Ann Intern Med. 2005;  143 (9) 632-638
  • 4 Hellmark T, Niles J L, Collins A B, McCluskey R T, Brunmark C. Comparison of anti-GBM antibodies in sera with or without ANCA.  J Am Soc Nephrol. 1997;  8 (3) 376-385
  • 5 Jennette J C, Falk R J. Pathogenic potential of anti-neutrophil cytoplasmic autoantibodies.  Adv Exp Med Biol. 1993;  336 7-15
  • 6 Kallenberg C G, Brouwer E, Weening J J, Tervaert J W. Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological potential.  Kidney Int. 1994;  46 (1) 1-15
  • 7 Harris A A, Falk R J, Jennette J C. Crescentic glomerulonephritis with a paucity of glomerular immunoglobulin localization.  Am J Kidney Dis. 1998;  32 (1) 179-184
  • 8 Jennette J C, Falk R J. Pathogenic potential of anti-neutrophil cytoplasmic autoantibodies.  Adv Exp Med Biol. 1993;  336 7-15
  • 9 Keogan M T, Esnault V L, Green A J, Lockwood C M, Brown D L. Activation of normal neutrophils by anti-neutrophil cytoplasm antibodies.  Clin Exp Immunol. 1992;  90 (2) 228-234
  • 10 Ewert B H, Jennette J C, Falk R J. Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells.  Kidney Int. 1992;  41(2) 375-383
  • 11 Braun M G, Csernok E, Gross W L, Müller-Hermelink H K. Proteinase 3, the target antigen of anticytoplasmic antibodies circulating in Wegener's granulomatosis: immunolocalization in normal and pathologic tissues.  Am J Pathol. 1991;  139 (4) 831-838
  • 12 Savage C O, Pottinger B E, Gaskin G, Pusey C D, Pearson J D. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells.  Am J Pathol. 1992;  141 (2) 335-342
  • 13 Porges A J, Redecha P B, Kimberly W T, Csernok E, Gross W L, Kimberly R P. Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma RIIa.  J Immunol. 1994;  153 (3) 1271-1280
  • 14 Charles L A, Caldas M L, Falk R J, Terrell R S, Jennette J C. Antibodies against granule proteins activate neutrophils in vitro.  J Leukoc Biol. 1991;  50 (6) 539-546
  • 15 Brouwer E, Huitema M G, Mulder A H et al.. Neutrophil activation in vitro and in vivo in Wegener's granulomatosis.  Kidney Int. 1994;  45 (4) 1120-1131
  • 16 Yang J J, Pendergraft W F, Alcorta D A et al.. Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis.  J Am Soc Nephrol. 2004;  15 (8) 2103-2114
  • 17 Ciavatta D J, Yang J, Preston G A et al.. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis.  J Clin Invest. 2010;  120 (9) 3209-3219
  • 18 Taekema-Roelvink M E, Van Kooten C, Heemskerk E, Schroeijers W, Daha M R. Proteinase 3 interacts with a 111-kD membrane molecule of human umbilical vein endothelial cells.  J Am Soc Nephrol. 2000;  11 (4) 640-648
  • 19 Kurosawa S, Esmon C T, Stearns-Kurosawa D J. The soluble endothelial protein C receptor binds to activated neutrophils: involvement of proteinase-3 and CD11b/CD18.  J Immunol. 2000;  165 (8) 4697-4703
  • 20 Ballieux B E, Hiemstra P S, Klar-Mohamad N et al.. Detachment and cytolysis of human endothelial cells by proteinase 3.  Eur J Immunol. 1994;  24 (12) 3211-3215
  • 21 Yang J J, Kettritz R, Falk R J, Jennette J C, Gaido M L. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase.  Am J Pathol. 1996;  149 (5) 1617-1626
  • 22 Taekema-Roelvink M E, van Kooten C, Janssens M C, Heemskerk E, Daha M R. Effect of anti-neutrophil cytoplasmic antibodies on proteinase 3-induced apoptosis of human endothelial cells.  Scand J Immunol. 1998;  48 (1) 37-43
  • 23 Baldus S, Eiserich J P, Mani A et al.. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration.  J Clin Invest. 2001;  108 (12) 1759-1770
  • 24 Brennan M L, Wu W, Fu X et al.. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species.  J Biol Chem. 2002;  277 (20) 17415-17427
  • 25 Woods A A, Linton S M, Davies M J. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques.  Biochem J. 2003;  370 (Pt 2) 729-735
  • 26 Lu X, Garfield A, Rainger G E, Savage C O, Nash G B. Mediation of endothelial cell damage by serine proteases, but not superoxide, released from antineutrophil cytoplasmic antibody-stimulated neutrophils.  Arthritis Rheum. 2006;  54 (5) 1619-1628
  • 27 Kettritz R, Jennette J C, Falk R J. Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils.  J Am Soc Nephrol. 1997;  8 (3) 386-394
  • 28 Kimberly R P. Fcgamma receptors and neutrophil activation.  Clin Exp Immunol. 2000;  120 (suppl 1) 18-19
  • 29 Kocher M, Edberg J C, Fleit H B, Kimberly R P. Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIIIb on human neutrophils.  J Immunol. 1998;  161 (12) 6909-6914
  • 30 Kocher M, Edberg J C, Fleit H B, Kimberly R P. Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIIIb on human neutrophils.  J Immunol. 1998;  161 (12) 6909-6914
  • 31 Yang J J, Alcorta D A, Preston G A et al.. Genes activated by ANCA IgG and ANCA F(ab')2 fragments [abstract].  J Am Soc Nephrol. 2000;  11 485A
  • 32 Bolton W K, Innes Jr D J, Sturgill B C, Kaiser D L. T-cells and macrophages in rapidly progressive glomerulonephritis: clinicopathologic correlations.  Kidney Int. 1987;  32 (6) 869-876
  • 33 Csernok E, Trabandt A, Müller A et al.. Cytokine profiles in Wegener's granulomatosis: predominance of type 1 (Th1) in the granulomatous inflammation.  Arthritis Rheum. 1999;  42 (4) 742-750
  • 34 Balding C E, Howie A J, Drake-Lee A B, Savage C O. Th2 dominance in nasal mucosa in patients with Wegener's granulomatosis.  Clin Exp Immunol. 2001;  125 (2) 332-339
  • 35 Komocsi A, Lamprecht P, Csernok E et al.. Peripheral blood and granuloma CD4( + )CD28(-) T cells are a major source of interferon-gamma and tumor necrosis factor-alpha in Wegener's granulomatosis.  Am J Pathol. 2002;  160 (5) 1717-1724
  • 36 Schmitt W H, Heesen C, Csernok E, Rautmann A, Gross W L. Elevated serum levels of soluble interleukin-2 receptor in patients with Wegener's granulomatosis: association with disease activity.  Arthritis Rheum. 1992;  35 (9) 1088-1096
  • 37 Wang G, Hansen H, Tatsis E, Csernok E, Lemke H, Gross W L. High plasma levels of the soluble form of CD30 activation molecule reflect disease activity in patients with Wegener's granulomatosis.  Am J Med. 1997;  102 (6) 517-523
  • 38 Berden A E, Kallenberg C G, Savage C O et al.. Cellular immunity in Wegener's granulomatosis: characterizing T lymphocytes.  Arthritis Rheum. 2009;  60 (6) 1578-1587
  • 39 Abdulahad W H, Stegeman C A, Limburg P C, Kallenberg C G. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission.  Arthritis Rheum. 2008;  58 (7) 2196-2205
  • 40 Abdulahad W H, Stegeman C A, van der Geld Y M, Doornbos-van der Meer B, Limburg P C, Kallenberg C G. Functional defect of circulating regulatory CD4 + T cells in patients with Wegener's granulomatosis in remission.  Arthritis Rheum. 2007;  56 (6) 2080-2091
  • 41 Nogueira E, Hamour S, Sawant D et al.. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis.  Nephrol Dial Transplant. 2010;  25 (7) 2209-2217
  • 42 Little M A, Smyth C L, Yadav R et al.. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo.  Blood. 2005;  106 (6) 2050-2058
  • 43 Xiao H, Heeringa P, Hu P et al.. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice.  J Clin Invest. 2002;  110 (7) 955-963
  • 44 Huugen D, Xiao H, van Esch A et al.. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha.  Am J Pathol. 2005;  167 (1) 47-58
  • 45 Xiao H, Heeringa P, Liu Z et al.. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies.  Am J Pathol. 2005;  167 (1) 39-45
  • 46 Jennette J C, Xiao H, Falk R J. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies.  J Am Soc Nephrol. 2006;  17 (5) 1235-1242
  • 47 Xiao H, Schreiber A, Heeringa P, Falk R J, Jennette J C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies.  Am J Pathol. 2007;  170 (1) 52-64
  • 48 Huugen D, van Esch A, Xiao H et al.. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice.  Kidney Int. 2007;  71 (7) 646-654
  • 49 Schreiber A, Xiao H, Jennette J C, Schneider W, Luft F C, Kettritz R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis.  J Am Soc Nephrol. 2009;  20 (2) 289-298
  • 50 Primo V C, Marusic S, Franklin C C et al.. Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis.  Clin Exp Immunol. 2010;  159 (3) 327-337
  • 51 Spencer S J, Burns A, Gaskin G, Pusey C D, Rees A J. HLA class II specificities in vasculitis with antibodies to neutrophil cytoplasmic antigens.  Kidney Int. 1992;  41 (4) 1059-1063
  • 52 Hogan S L, Satterly K K, Dooley M A, Nachman P H, Jennette J C, Falk R J. Glomerular Disease Collaborative Network . Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis.  J Am Soc Nephrol. 2001;  12 (1) 134-142
  • 53 Pendergraft III W F, Pressler B M, Jennette J C, Falk R J, Preston G A. Autoantigen complementarity: a new theory implicating complementary proteins as initiators of autoimmune disease.  J Mol Med. 2005;  83 (1) 12-25
  • 54 Pendergraft III W F, Preston G A, Shah R R et al.. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3.  Nat Med. 2004;  10 (1) 72-79
  • 55 Kain R, Exner M, Brandes R et al.. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis.  Nat Med. 2008;  14 (10) 1088-1096
  • 56 Kessenbrock K, Krumbholz M, Schönermarck U et al.. Netting neutrophils in autoimmune small-vessel vasculitis.  Nat Med. 2009;  15 (6) 623-625
  • 57 Pagnoux C, Guillevin L. Churg-Strauss syndrome: evidence for disease subtypes?.  Curr Opin Rheumatol. 2010;  22 (1) 21-28
  • 58 Committee on Safety of Medicines/Medicines Control Agency . Leukotriene receptor antagonists update on adverse reaction profiles.  Curr Probl Pharmacovigilance. 1999;  25 14
  • 59 DuMouchel W, Smith E T, Beasley R et al.. Association of asthma therapy and Churg-Strauss syndrome: an analysis of postmarketing surveillance data.  Clin Ther. 2004;  26 (7) 1092-1104
  • 60 Hauser T, Mahr A, Metzler C et al.. The leucotriene receptor antagonist montelukast and the risk of Churg-Strauss syndrome: a case-crossover study.  Thorax. 2008;  63 (8) 677-682
  • 61 Harrold L R, Patterson M K, Andrade S E et al.. Asthma drug use and the development of Churg-Strauss syndrome (CSS).  Pharmacoepidemiol Drug Saf. 2007;  16 (6) 620-626
  • 62 Bibby S, Healy B, Steele R, Kumareswaran K, Nelson H, Beasley R. Association between leukotriene receptor antagonist therapy and Churg-Strauss syndrome: an analysis of the FDA AERS database.  Thorax. 2010;  65 (2) 132-138
  • 63 Hellmich B, Csernok E, Gross W L. Proinflammatory cytokines and autoimmunity in Churg-Strauss syndrome.  Ann N Y Acad Sci. 2005;  1051 121-131
  • 64 Schönermarck U, Csernok E, Trabandt A, Hansen H, Gross W L. Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides.  Clin Exp Rheumatol. 2000;  18 (4) 457-463
  • 65 Clutterbuck E J, Hirst E M, Sanderson C J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF.  Blood. 1989;  73 (6) 1504-1512
  • 66 Yamaguchi Y, Hayashi Y, Sugama Y et al.. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor.  J Exp Med. 1988;  167 (5) 1737-1742
  • 67 Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T. Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils.  Blood. 1991;  78 (10) 2542-2547
  • 68 Lopez A F, Sanderson C J, Gamble J R, Campbell H D, Young I G, Vadas M A. Recombinant human interleukin 5 is a selective activator of human eosinophil function.  J Exp Med. 1988;  167 (1) 219-224
  • 69 Fujisawa T, Abu-Ghazaleh R, Kita H, Sanderson C J, Gleich G J. Regulatory effect of cytokines on eosinophil degranulation.  J Immunol. 1990;  144 (2) 642-646
  • 70 Shahabuddin S, Ponath P, Schleimer R P. Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines.  J Immunol. 2000;  164 (7) 3847-3854
  • 71 Kiene M, Csernok E, Müller A, Metzler C, Trabandt A, Gross W L. Elevated interleukin-4 and interleukin-13 production by T cell lines from patients with Churg-Strauss syndrome.  Arthritis Rheum. 2001;  44 (2) 469-473
  • 72 Zwerina J, Axmann R, Jatzwauk M, Sahinbegovic E, Polzer K, Schett G. Pathogenesis of Churg-Strauss syndrome: recent insights.  Autoimmunity. 2009;  42 (4) 376-379
  • 73 Polzer K, Karonitsch T, Neumann T et al.. Eotaxin-3 is involved in Churg-Strauss syndrome—a serum marker closely correlating with disease activity.  Rheumatology (Oxford). 2008;  47 (6) 804-808
  • 74 Saito H, Tsurikisawa N, Tsuburai T, Oshikata C, Akiyama K. Cytokine production profile of CD4 + T cells from patients with active Churg-Strauss syndrome tends toward Th17.  Int Arch Allergy Immunol. 2009;  149 (suppl 1) 61-65
  • 75 Tsurikisawa N, Saito H, Tsuburai T et al.. Differences in regulatory T cells between Churg-Strauss syndrome and chronic eosinophilic pneumonia with asthma.  J Allergy Clin Immunol. 2008;  122 (3) 610-616
  • 76 Vaglio A, Martorana D, Maggiore U Secondary and Primary Vasculitis Study Group et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome.  Arthritis Rheum. 2007;  56 (9) 3159-3166
  • 77 Wieczorek S, Hellmich B, Arning L et al.. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener's granulomatosis.  Arthritis Rheum. 2008;  58 (6) 1839-1848
  • 78 Salant D J. Immunopathogenesis of crescentic glomerulonephritis and lung purpura.  Kidney Int. 1987;  32 (3) 408-425
  • 79 Briggs W A, Johnson J P, Teichman S, Yeager H C, Wilson C B. Antiglomerular basement membrane antibody-mediated glomerulonephritis and Goodpasture's syndrome.  Medicine (Baltimore). 1979;  58 (5) 348-361
  • 80 Kelly P T, Haponik E F. Goodpasture syndrome: molecular and clinical advances.  Medicine (Baltimore). 1994;  73 (4) 171-185
  • 81 Fischer E G, Lager D J. Anti-glomerular basement membrane glomerulonephritis: a morphologic study of 80 cases.  Am J Clin Pathol. 2006;  125 (3) 445-450
  • 82 Fisher M, Pusey C D, Vaughan R W, Rees A J. Susceptibility to anti-glomerular basement membrane disease is strongly associated with HLA-DRB1 genes.  Kidney Int. 1997;  51 (1) 222-229
  • 83 Huey B, McCormick K, Capper J et al.. Associations of HLA-DR and HLA-DQ types with anti-GBM nephritis by sequence-specific oligonucleotide probe hybridization.  Kidney Int. 1993;  44 (2) 307-312
  • 84 Burns A P, Fisher M, Li P, Pusey C D, Rees A J. Molecular analysis of HLA class II genes in Goodpasture's disease.  QJM. 1995;  88 (2) 93-100
  • 85 Kitagawa W, Imai H, Komatsuda A et al.. The HLA-DRB1*1501 allele is prevalent among Japanese patients with anti-glomerular basement membrane antibody-mediated disease.  Nephrol Dial Transplant. 2008;  23 (10) 3126-3129
  • 86 Kalluri R, Danoff T M, Okada H, Neilson E G. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.  J Clin Invest. 1997;  100 (9) 2263-2275
  • 87 Liu K, Li Q Z, Delgado-Vega A M Profile Study Group et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans.  J Clin Invest. 2009;  119 (4) 911-923
  • 88 Aitman T J, Dong R, Vyse T J et al.. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.  Nature. 2006;  439 (7078) 851-855
  • 89 Behmoaras J, Bhangal G, Smith J et al.. Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility.  Nat Genet. 2008;  40 (5) 553-559
  • 90 Lerner R A, Glassock R J, Dixon F J. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis.  J Exp Med. 1967;  126 (6) 989-1004
  • 91 Wieslander J, Barr J F, Butkowski R J et al.. Goodpasture antigen of the glomerular basement membrane: localization to noncollagenous regions of type IV collagen.  Proc Natl Acad Sci U S A. 1984;  81 (12) 3838-3842
  • 92 Wieslander J, Bygren P, Heinegård D. Isolation of the specific glomerular basement membrane antigen involved in Goodpasture syndrome.  Proc Natl Acad Sci U S A. 1984;  81 (5) 1544-1548
  • 93 Wieslander J, Langeveld J, Butkowski R, Jodlowski M, Noelken M, Hudson B G. Physical and immunochemical studies of the globular domain of type IV collagen: cryptic properties of the Goodpasture antigen.  J Biol Chem. 1985;  260 (14) 8564-8570
  • 94 Hellmark T, Segelmark M, Wieslander J. Anti-GBM antibodies in Goodpasture syndrome; anatomy of an epitope.  Nephrol Dial Transplant. 1997;  12 (4) 646-648
  • 95 Kalluri R, Sun M J, Hudson B G, Neilson E G. The Goodpasture autoantigen. Structural delineation of two immunologically privileged epitopes on alpha3(IV) chain of type IV collagen.  J Biol Chem. 1996;  271 (15) 9062-9068
  • 96 Saxena R, Bygren P, Butkowski R, Wieslander J. Entactin: a possible auto-antigen in the pathogenesis of non-Goodpasture anti-GBM nephritis.  Kidney Int. 1990;  38 (2) 263-272
  • 97 Netzer K O, Leinonen A, Boutaud A et al.. The goodpasture autoantigen. Mapping the major conformational epitope(s) of alpha3(IV) collagen to residues 17-31 and 127-141 of the NC1 domain.  J Biol Chem. 1999;  274 (16) 11267-11274
  • 98 Hellmark T, Segelmark M, Unger C, Burkhardt H, Saus J, Wieslander J. Identification of a clinically relevant immunodominant region of collagen IV in Goodpasture disease.  Kidney Int. 1999;  55 (3) 936-944
  • 99 Meyers K E, Kinniry P A, Kalluri R, Neilson E G, Madaio M P. Human Goodpasture anti-alpha3(IV)NC1 autoantibodies share structural determinants.  Kidney Int. 1998;  53 (2) 402-407
  • 100 Yang R, Hellmark T, Zhao J et al.. Levels of epitope-specific autoantibodies correlate with renal damage in anti-GBM disease.  Nephrol Dial Transplant. 2009;  24 (6) 1838-1844
  • 101 Stevenson A, Yaqoob M, Mason H, Pai P, Bell G M. Biochemical markers of basement membrane disturbances and occupational exposure to hydrocarbons and mixed solvents.  QJM. 1995;  88 (1) 23-28
  • 102 Donaghy M, Rees A J. Cigarette smoking and lung haemorrhage in glomerulonephritis caused by autoantibodies to glomerular basement membrane.  Lancet. 1983;  2 (8364) 1390-1393
  • 103 Kalluri R, Meyers K, Mogyorosi A, Madaio M P, Neilson E G. Goodpasture syndrome involving overlap with Wegener's granulomatosis and anti-glomerular basement membrane disease.  J Am Soc Nephrol. 1997;  8 (11) 1795-1800
  • 104 Short A K, Esnault V L, Lockwood C M. Anti-neutrophil cytoplasm antibodies and anti-glomerular basement membrane antibodies: two coexisting distinct autoreactivities detectable in patients with rapidly progressive glomerulonephritis.  Am J Kidney Dis. 1995;  26 (3) 439-445
  • 105 Hellmark T, Niles J L, Collins A B, McCluskey R T, Brunmark C. Comparison of anti-GBM antibodies in sera with or without ANCA.  J Am Soc Nephrol. 1997;  8 (3) 376-385
  • 106 Heeringa P, Brouwer E, Klok P A et al.. Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated glomerular injury in the rat.  Am J Pathol. 1996;  149 (5) 1695-1706
  • 107 Bolton W K, May W J, Sturgill B C. Proliferative autoimmune glomerulonephritis in rats: a model for autoimmune glomerulonephritis in humans.  Kidney Int. 1993;  44 (2) 294-306
  • 108 Garcia G E, Truong L D, Li P et al.. Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis.  Am J Pathol. 2007;  170 (5) 1485-1496
  • 109 Fujinaka H, Yamamoto T, Feng L et al.. Anti-perforin antibody treatment ameliorates experimental crescentic glomerulonephritis in WKY rats.  Kidney Int. 2007;  72 (7) 823-830
  • 110 Derry C J, Ross C N, Lombardi G et al.. Analysis of T cell responses to the autoantigen in Goodpasture's disease.  Clin Exp Immunol. 1995;  100 (2) 262-268
  • 111 Wu J, Borillo J, Glass W F, Hicks J, Ou C N, Lou Y H. T cell epitope of alpha3 chain of type IV collagen induces severe glomerulonephritis.  Kidney Int. 2003;  64 (4) 1292-1301
  • 112 Arends J, Wu J, Borillo J et al.. T cell epitope mimicry in antiglomerular basement membrane disease.  J Immunol. 2006;  176 (2) 1252-1258
  • 113 Wolf D, Hochegger K, Wolf A M et al.. CD4 + CD25 + regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice.  J Am Soc Nephrol. 2005;  16 (5) 1360-1370
  • 114 Salama A D, Chaudhry A N, Holthaus K A et al.. Regulation by CD25 + lymphocytes of autoantigen-specific T-cell responses in Goodpasture's (anti-GBM) disease.  Kidney Int. 2003;  64 (5) 1685-1694
  • 115 Adler S, Baker P J, Pritzl P, Couser W G. Detection of terminal complement components in experimental immune glomerular injury.  Kidney Int. 1984;  26 (6) 830-837
  • 116 Groggel G C, Salant D J, Darby C, Rennke H G, Couser W G. Role of terminal complement pathway in the heterologous phase of antiglomerular basement membrane nephritis.  Kidney Int. 1985;  27 (4) 643-651
  • 117 Tipping P G, Boyce N W, Holdsworth S R. Relative contributions of chemo-attractant and terminal components of complement to anti-glomerular basement membrane (GBM) glomerulonephritis.  Clin Exp Immunol. 1989;  78 (3) 444-448
  • 118 Sheerin N S, Springall T, Carroll M C, Hartley B, Sacks S H. Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice.  Clin Exp Immunol. 1997;  110 (3) 403-409
  • 119 Otten M A, Groeneveld T W, Flierman R et al.. Both complement and IgG fc receptors are required for development of attenuated antiglomerular basement membrane nephritis in mice.  J Immunol. 2009;  183 (6) 3980-3988
  • 120 Nakamura A, Yuasa T, Ujike A et al.. Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease.  J Exp Med. 2000;  191 (5) 899-906

Patrick H NachmanM.D. 

UNC Kidney Center, Campus Box 7155, University of North Carolina

Chapel Hill, NC 27599

Email: patrick_nachman@med.unc.edu