Planta Med 2011; 77(17): 1876-1882
DOI: 10.1055/s-0031-1279992
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Kaempferol Regulates the Lipid-Profile in High-Fat Diet-Fed Rats through an Increase in Hepatic PPARα Levels

Chia Ju Chang1 , Thing-Fong Tzeng2 , Shorong-Shii Liou3 , Yuan-Shiun Chang1 , I-Min Liu3
  • 1School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
  • 2Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, Pingtung County, Taiwan
  • 3Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Yanpu Shiang, Ping Tung Shien, Taiwan
Further Information

Publication History

received January 31, 2011 revised May 16, 2011

accepted May 22, 2011

Publication Date:
04 July 2011 (online)

Abstract

The aim of this study was to investigate the antiobesity and antihyperlipidemic effects of the flavonoid kaempferol (3,5,7,4′-tetrahydroxyflavone). After being fed a high-fat diet (HFD) for two weeks, rats were dosed orally with kaempferol (75, 150, or 300 mg/kg) or fenofibrate (100 mg/kg) once daily for eight weeks. Fenofibrate is an antilipemic agent that exerts its therapeutic effects through activation of peroxisome proliferator-activated receptor α (PPARα). Kaempferol (300 mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights, plasma lipid levels, as well as the coronary artery risk and atherogenic indices of HFD-fed rats. Kaempferol also caused dose-related reductions in hepatic triglyceride and cholesterol content and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes in HFD-fed rats. Kaempferol and fenofibrate reversed the HFD-induced downregulation of hepatic PPARα. HFD-induced reductions in the hepatic levels of acyl-CoA oxidase (ACO), and cytochrome P450 isoform 4A1 (CYP4A1) proteins were reversed by kaempferol and fenofibrate. The elevated expression of hepatic sterol regulatory element binding proteins (SREBPs) in HFD-fed rats were lowered by kaempferol and fenofibrate. These results suggest that kaempferol reduced the accumulation of visceral fat and improved hyperlipidemia in HFD-fed obese rats by increasing lipid metabolism through the downregulation of SREBPs and promoting the hepatic expression of ACO and CYP4A1, secondary to a direct upregulation hepatic PPARα expression.

References

  • 1 McCarthy M I. Genomics, type 2 diabetes, and obesity.  N Engl J Med. 2010;  363 2339-2350
  • 2 Tilg H, Moschen A R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity.  Nat Rev Immunol. 2006;  6 772-783
  • 3 Padwal R S, Majumdar S R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant.  Lancet. 2007;  369 71-77
  • 4 Nijveldt R J, van Nood E, van Hoorn D E, Boelens P G, van Norren K, van Leeuwen P A. Flavonoids: a review of probable mechanisms of action and potential applications.  Am J Clin Nutr. 2001;  74 418-425
  • 5 Prince P S, Sathya B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats.  Eur J Pharmacol. 2010;  635 142-148
  • 6 Ong K C, Khoo H E. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats.  Life Sci. 2000;  67 1695-1705
  • 7 Sclafani A, Springer D. Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes.  Physiol Behav. 1976;  17 461-471
  • 8 van Heek M, Compton D S, France C F, Tedesco R P, Fawzi B, Graziano M P, Sybertz E J, Strader C D, Davis jr. H R. Diet-induced obese mice develop peripheral, but not central, resistance to leptin.  J Clin Invest. 1997;  99 385-390
  • 9 Zhou J Y, Zhou S W, Zhang K B, Tang J L, Guang L X, Ying Y, Xu Y, Zhang L, Li D D. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats.  Biol Pharm Bull. 2008;  31 1169-1176
  • 10 Friedewald W T, Levy R I, Fredrickson D S. Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of preparative ultracentrifuge.  Clin Chem. 1972;  18 499-502
  • 11 Abbott R D, Wilson P W, Kannel W B, Castelli W P. High density lipoprotein-cholesterol, total cholesterol screening and myocardial infarction. The Framingham Study.  Arterosclerosis. 1988;  8 207-211
  • 12 Shanmugasundaram K R, Visvanathan A, Dhandapani K, Srinivasan N, Rasappan P, Gilbert R, Alladi S, Kancharla S, Vasanthi N. Effect of high-fat diet on cholesterol distribution in plasma lipoproteins, cholesterol esterifying activity in leucocytes, and erythrocyte membrane components studied: importance of body weight.  Am J Clin Nutr. 1986;  44 805-815
  • 13 Folch J, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipids from animal tissues.  J Biol Chem. 1957;  226 497-506
  • 14 Brunt E M, Janney C G, Di Bisceglie A M, Neuschwander-Tetri B A, Bacon B R. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions.  Am J Gastroenterol. 1999;  94 2467-2474
  • 15 Park C H, Yamabe N, Noh J S, Kang K S, Tanaka T, Yokozawa T. The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice.  Biol Pharm Bull. 2009;  32 1734-1740
  • 16 Mancini F P, Lanni A, Sabatino L, Moreno M, Giannino A, Contaldo F, Colantuoni V, Goglia F. Fenofibrate prevents and reduces body weight gain and adiposity in diet-induced obese rats.  FEBS Lett. 2001;  491 154-158
  • 17 Björntorp P. Number and size of adipose tissue fat cells in relation to metabolism in human obesity.  Metabolism. 1971;  20 703-713
  • 18 Paccaud F, Schlüter-Fasmeyer V, Wietlisbach V, Bovet P. Dyslipidemia and abdominal obesity: an assessment in three general populations.  J Clin Epidemiol. 2000;  53 393-400
  • 19 Malloy M J, Kane J P. A risk factor for atherosclerosis: triglyceride-rich lipoproteins.  Adv Intern Med. 2001;  47 111-136
  • 20 Libby P. Current concepts of the pathogenesis of the acute coronary syndromes.  Circulation. 2001;  104 365-372
  • 21 Ansell B J, Watson K E, Fogelman A M, Navab M, Fonarow G C. High-density lipoprotein function recent advances.  J Am Coll Cardiol. 2005;  46 1792-1798
  • 22 Hartog M G L, Feskens E J M, Hollman P C H, Katan M B, Kromhouy D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study.  Lancet. 1993;  342 1007-1011
  • 23 Fang X K, Gao J, Zhu D N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity.  Life Sci. 2008;  82 615-622
  • 24 Mandard S, Muller M, Kersten S. Peroxisome proliferators-activated receptor alpha target genes.  Cell Mol Life Sci. 2004;  61 393-416
  • 25 Hodge H C, Downs W L, Panner B S, Smith D W, Maynard E A. Oral toxicity and metabolism of diuron (N-(3,4-dichlorophenyl)-N′,N′-dimethylurea) in rats and dogs.  Food Chem Toxicol. 1967;  5 513-531
  • 26 Fatehi-Hassanabad Z, Chan C. Transcriptional regulation of lipid metabolism by fatty acids: a key determinant of pancreatic beta-cell function.  Nutr Metab. 2005;  2 1-12
  • 27 Briggs M R, Yokoyama C, Wang X, Brown M S, Goldstein J L. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promotor. I. Identification of the protein and delineation of its target nucleotide sequence.  J Biol Chem. 1993;  268 14490-14496
  • 28 Ginsberg H N. REVIEW: Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia.  J Clin Endocrinol Metab. 2006;  91 383-392
  • 29 Park C H, Yamabe N, Noh J S, Kang K S, Tanaka T, Yokozawa T. The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice.  Biol Pharm Bull. 2009;  32 1734-1740

Prof. I-Min Liu

Department of Pharmacy & Graduate Institute of Pharmaceutical Technology
Tajen University

No. 20, Weisin Rd

PingTung County

Taiwan

Phone: +886-8-7 62 40 02-22 11

Fax: +886-8-7 62 53 08

Email: iml@mail.tajen.edu.tw

Prof. Yuan-Shiun Chang

School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
China Medical University

Taichung

Taiwan

Phone: +886-4-22 03 03 80

Fax: +886-4-22 08 33 62

Email: yschang@mail.cmu.edu.tw