Thorac Cardiovasc Surg 2011; 59(8): 484-489
DOI: 10.1055/s-0031-1280043
Original Thoracic

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Human Amniotic Fluid on Costal Cartilage Regeneration (an Experimental Study)

K. Kavakli1 , S. Gurkok1 , H. Caylak1 , O. Genc1 , M. Gamsizkan2 , O. Yucel1 , E. Karasahin3 , A. Gozubuyuk1 , C. Tasci4
  • 1Department of Thoracic Surgery, Gulhane Military Medical Academy, Ankara, Turkey
  • 2Department of Pathology, Gulhane Military Medical Academy, Ankara, Turkey
  • 3Department of Obstetrics and Gynecology, Gulhane Military Medical Academy, Ankara, Turkey
  • 4Department of Chest Disease, Gulhane Military Medical Academy, Ankara, Turkey
Further Information

Publication History

received April 14, 2010 resubmitted August 13, 2010

accepted Oct. 13, 2010

Publication Date:
25 July 2011 (online)

Abstract

Objective: After surgical correction of thoracic wall deformities, promoting neochondrogenesis in the perichondrial bed is very important for obtaining a flexible chest wall. In this experimental study, we aimed to investigate the effects of human amniotic fluid on cartilage regeneration in the costal perichondrial bed in a rabbit model. Methods: Fifty-four adult New Zealand rabbits were divided into three groups, with 18 rabbits in each group. The third and fifth costal cartilages were excised totally on the right side and partially excised on the left side in all groups. Group 1 served as controls. All rabbits in group 1 underwent closure of the perichondrium of the third costal cartilage and closure of the perichondrium of the fifth costal cartilage with reimplantation of reshaped cartilage into the fifth costal perichondrial bed. Rabbits in group 2 underwent closure of the perichondrium of the third and fifth costal cartilages after the administration of human amniotic fluid into the perichondrial bed. Group 3 rabbits received both human amniotic fluid and underwent cartilage reimplantation. The third and fifth costal perichondriums in group 3 rabbits were closed after the administration of human amniotic fluid and the reimplantation of reshaped cartilages. Rabbits were sacrificed at two, eight and 12 weeks after operation. Results: Numerical scores for the right perichondrial bed were significantly higher for group 2 compared to group 1 (p < 0.05). But the difference was not significant for the left perichondrial bed (p > 0.05). The diameter of chondrogenesis also did not differ significantly between left and right perichondrial bed for all groups. Conclusion: Our study shows that administration of human amniotic fluid into the perichondrial bed increases chondrogenesis in adult rabbits, an important finding which may contribute to improving chest wall flexibility after the surgical correction of pectus excavatum.

References

  • 1 Fonkalsrud E W, Dunn J C Y, Atkinson J B. Repair of pectus excavatum deformities: 30 years' experience with 375 patients.  Ann Surg. 2000;  231 443-448
  • 2 Brown A L. Pectus excavatum (funnel chest): anatomic basis, surgical treatment of the incipient stage in infancy, and correction of the deformity in the fully developed stage.  J Thorac Surg. 1939;  9 164-169
  • 3 Ravitch M M. Operative technique of pectus excavatum repair.  Ann Surg. 1949;  129 429-444
  • 4 Horch R E, Stoelben E, Carbon R, Sultan A A, Bach A D, Kneser U. Pectus excavatum breast and chest deformity: indications for aesthetic plastic surgery versus thoracic surgery in a multicentre experience.  Aesthetic Plast Surg. 2006;  30 403-411
  • 5 Weber P G, Huemmer H P, Reingruber B. Forces to be overcome in correction of pectus excavatum.  J Thorac Cardiovasc Surg. 2006;  132 1369-1373
  • 6 Nuss D, Kelly jr. R E, Croitoru D P, Katz M E. A ten-year review of a minimally invasive technique for the correction of pectus excavatum.  J Pediatr Surg. 1998;  33 545-552
  • 7 Derveaux L, Ivanoff I, Rochette F, Demedts M. Mechanism of pulmonary function changes after surgical correction for funnel chest.  Eur Respir J. 1988;  1 823-825
  • 8 Goertzen M, Baltzer A, Schulitz K P. Long-term results after operation for funnel chest.  Arch Orthop Trauma Surg. 1993;  112 289-291
  • 9 Wynn S R, Driscoll D J, Ostrom N K et al. Exercise cardiorespiratory function in adolescents with pectus excavatum. Observations before and after operation.  J Thorac Cardiovasc Surg. 1990;  99 41-47
  • 10 Malek M M, Berger D E, Marelich W D, Coburn J W, Beck T W, Housh T J. Pulmonary function following surgical repair of pectus excavatum: a meta-analysis.  Eur J Cardiothorac Surg. 2006;  30 637-643
  • 11 Malek M, Berger D E, Housh T J, Marelich W D, Coburn J W, Beck T W. Cardiovascular function following surgical repair of pectus excavatum: a metaanalysis.  Chest. 2006;  130 506-516
  • 12 Kuenzler K A, Stolar J H C. Surgical correction of pectus excavatum.  Pediatr Resp Rev. 2009;  10 7-11
  • 13 Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M. Hyaluronic acid enhances proliferation and chondroitin synthesis in cultured chondrocytes embedded in collagen gels.  J Cell Physiol. 1999;  179 142-148
  • 14 Sonoda M, Harwood F L, Wada Y, Moriya H, Amiel D. The effects of hyaluronan on the meniscus and on the articular cartilage after partial meniscectomy.  Am J Sports Med. 1997;  25 755-762
  • 15 Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis.  J Rheumatol. 1994;  21 680-688
  • 16 Dahl L B, Kimpton W G, Cahill R N P, Brown T J, Fraser J R E. The origin and fate of hyaluronan in amniotic fluid.  J Dev Physiol. 1989;  12 209-218
  • 17 Longaker M T, Adzick S, Hall J L. Studies in fetal wound healing. VII. Fetal wound healing may be modulated by hyaluronic acid stimulating activity in amniotic fluid.  J Pediatr Surg. 1990;  25 430-433
  • 18 Huo M H, Troiano N W, Pelker R R, Gundberg C M, Friedlaender G E. The influence of ibuprofen on fracture repair: Biomechanical, biochemical, histologic and histomorphometric parameters in rats.  J Orthop Res. 1991;  9 383-390
  • 19 Gurkok S, Genc O, Dakak M, Balkanlı K. The use of absorbable material in correction of pectus deformities.  Eur J Cardiothorac Surg. 2001;  19 711-712
  • 20 Genc O, Gurkok S, Gozubuyuk A, Dakak M, Caylak H, Yucel O. Repair of pectus deformities: experience and outcome in 317 cases.  Ann Saudi Med. 2006;  26 370-374
  • 21 Martinez D, Juame J, Stein T, Pena A. The effect of costal cartilage resection on chest wall development.  Pediatr Surg Int. 1990;  5 170-175
  • 22 Calık M, Aribas O K, Kanat F. The effect of costal cartilage resection on the chest wall development: a morphometric evaluation.  Eur J Cardiothorac Surg. 2007;  32 756-760
  • 23 Siebert J W, Burd A R, McCarthy J G, Weinzweig J, Ehrlich H P. Fetal wound healing: a biochemical study of scarless healing.  Plast Reconstr Surg. 1990;  85 495-502
  • 24 Ozgenel G Y, Filiz G, Ozcan M. Effects of human amniotic fluid on cartilage regeneration from free perichondrial grafts in rabbits.  J Plast Surg. 2004;  57 423-428
  • 25 Shida J, Jingushi S, Izumi T, Iwaki A, Sugioka Y. Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.  J Orthop Res. 1996;  14 265-272
  • 26 Quigley P M, Haller J A, Jelus K L, Loughlin G M, Marcus C L. Cardiorespiratory function before and after corrective surgery in pectus excavatum.  J Pediatr. 1996;  128 638-643
  • 27 Croitoru D P, Kelly jr. R E, Goretsky M J, Gustin T, Keever R, Nuss D. The minimally invasive Nuss technique for recurrent or failed pectus excavatum repair in 50 patients.  J Pediatr Surg. 2005;  40 246-251

Dr. Kuthan Kavakli, MD

Department of Thoracic Surgery
Gulhane Military Medical Academy

Etlik

06018 Ankara

Turkey

Phone: +90 31 23 04 51 71

Fax: +90 31 23 04 54 04

Email: dr_kuthan_78@hotmail.com