Planta Med 2012; 78(1): 36-38
DOI: 10.1055/s-0031-1280199
Biological and Pharmacological Activity
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Inhibition of α-Glucosidase and Hypoglycemic Effect of Stilbenes from the Amazonian Plant Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo (Leguminosae)

Aline C. Pereira1 , Mara S. P. Arruda2 , Ewerton A. S. da Silva2 , Milton N. da Silva2 , Virgínia S. Lemos1 , Steyner F. Cortes3
  • 1Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
  • 2Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
  • 3Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Further Information

Publication History

received March 25, 2011 revised June 21, 2011

accepted August 8, 2011

Publication Date:
16 September 2011 (online)

Abstract

The control of blood glucose levels is critical in the treatment of diabetes mellitus. α-Glucosidase inhibitors are of great importance in reducing hyperglycemia, and plants have provided many of these agents. The present study aimed at investigating the effect of two stilbenes, lonchocarpene and 3,5-dimethoxy-4′-O-prenyl-trans-stilbene (DPS), isolated from the Amazonian plant Deguelia rufescens var. urucu, on α-glucosidase activity and on mice postprandial hyperglycemia. Lonchocarpene and DPS inhibited α-glucosidase in vitro, with pIC50 values of 5.68 ± 0.12 and 5.73 ± 0.08, respectively. In addition, when given orally, DPS produced a significant reduction of hyperglycemia induced by an oral tolerance test, while lonchocarpene did not. Data suggest that DPS may have a potential use as an antidiabetic drug.

References

  • 1 Stolar M W, Hoogwerf B J, Gorshow S M, Boyle P J, Wales D O. Managing type 2 diabetes: going beyond glycemic control.  J Manag Care Pharm. 2008;  14 S2-S19
  • 2 Lopez-Candales A. Metabolic syndrome X: a comprehensive review of the pathophysiology and recommended therapy.  J Med. 2001;  32 283-300
  • 3 Ortiz-Andrade R R, García-Jiménez S, Castillo-España P, Ramírez-Ávila G, Villalobos-Molina R, Estrada-Soto S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent.  J Ethnopharmacol. 2007;  109 48-53
  • 4 Chiasson J L, Josse R G, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomized trial.  Lancet. 2002;  359 2072-2077
  • 5 Kawamori R, Tajima N, Iwamoto Y, Shimamoto K, Kaku K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance.  Lancet. 2009;  373 1607-1614
  • 6 Babu K S, Tiwari A K, Srinivas P V, All A Z, Raju B C, Rao J M. Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall. ex Meisson.  Bioorg Med Chem Lett. 2004;  14 3841-3845
  • 7 Kerem Z, Bilkis I, Flaishman M A, Sivan L. Antioxidant activity and inhibition of α-glucosidase by trans-resveratrol, Piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L.  J Agric Food Chem. 2006;  54 1243-1247
  • 8 Lam S H, Chen J M, Kang C J, Chen C H, Lee S S. Alpha-glucosidase inhibitors from the seeds of Syagrus romanzoffiana.  Phytochemistry. 2008;  69 1173-1178
  • 9 Choi S Z, Lee S O, Jang K U, Chung S H, Park S H, Kang H C, Yang E Y, Cho H J, Lee K R. Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum.  Arch Pharm Res. 2005;  28 1027-1030
  • 10 Hung L M, Chen J K, Huang S S, Lee R S, Su M J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes.  Cardiovasc Res. 2000;  47 549-555
  • 11 Das S, Alagappan V K, Bagchi D, Sharma H S, Maulik N, Das D K. Coordinated induction of iNOS-VEGF-KDR-eNOS after resveratrol consumption: a potential mechanism for resveratrol preconditioning of the heart.  Vasc Pharmacol. 2005;  42 281-289
  • 12 Lôbo L T, Silva G A, Freitas M C C, Filho A P S S, Silva M N, Arruda A C, Guilhon G M S P, Santos L S, Santos A S, Arruda M S P. Stilbenes from Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo leaves: effects on seed germination and plant growth.  J Braz Chem Soc. 2010;  21 1838-1844
  • 13 Gusmão S D, Páscoa V, Mathias L, Curcino Vieira I J, Braz-Filho R, Alves Lemos F J. Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypt (Diptera: Culicidae).  Mems Inst Oswaldo Cruz. 2002;  97 371-375
  • 14 Mors W B, Do Nascimento M C, Ribeiro do Valle J, Aragão J A. Ichthyotoxic activity of plants of the genus Derris and compounds isolated there from.  Ci Cult. 1973;  25 647-648
  • 15 Fang N, Casida J E. Cubé resin insecticide: identification and biological activity of 29 rotenoid constituents.  J Agric Food Chem. 1999;  47 2130-2136
  • 16 Fang N, Casida J E. New bioactive flavonoids and stilbenes in cubé resin insecticide.  J Nat Prod. 1999;  62 205-210
  • 17 Lôbo L T, Silva G A, Ferreira M, da Silva M N, Santos A S, Arruda A C, Guilhon G M P, Santos L S, Borges R S, Arruda M S P. Dihydroflavonols from the leaves of Derris urucu (Leguminosae): structural elucidation and DPPH radical-scavenging activity.  J Braz Chem Soc. 2009;  20 1082-1088
  • 18 Ma C M, Hattori M, Daneshtalab M, Wang L. Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent α-glucosidase inhibitors.  J Med Chem. 2008;  51 6188-6194
  • 19 Hanozet G, Pircher H P, Vanni P, Oesch B, Semenza G. An example of enzyme hysteresis. The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrose.  J Biol Chem. 1981;  256 3703-3711
  • 20 Li T, Zhang X D, Song Y W, Liu J W. A microplate-based screening method for α-glucosidase inhibitors.  Nat Prod Res Dev. 2005;  10 1128-1134
  • 21 Li H, Song F, Xing J, Tsao R, Liu Z, Liu S. Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS.  J Am Soc Mass Spectrom. 2009;  20 1496-1503
  • 22 Aguilar-Santamaría L, Ramírez G, Nicasio P, Alegría-Reyes C, Herrera-Arellano A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth.  J Ethnopharmacol. 2009;  124 284-288
  • 23 Heo S J, Hwang J Y, Choi J I, Han J S, Kim H J, Jeon Y J. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice.  Eur J Pharmacol. 2009;  615 252-256
  • 24 Martins M R, Vieira A K G, Souza E P G, Moura A S. Early overnutrition impairs insulin signaling in the heart of adult Swiss mice.  J Endocrinol. 2008;  198 591-598

Steyner F. Cortes

Department of Pharmacology
Instituto de Ciências Biológicas
Universidade Federal de Minas Gerais

Av. Antônio Carlos, 6627

31270-901, Belo Horizonte, MG

Brazil

Phone: +55 31 34 09 27 26

Fax: +55 31 34 09 26 95

Email: sfcortes@icb.ufmg.br