Subscribe to RSS
DOI: 10.1055/s-0031-1280311
© Georg Thieme Verlag KG Stuttgart · New York
Lignans from the Flower Buds of Magnolia liliflora Desr.
Publication History
received February 16, 2011
revised Sept. 21, 2011
accepted Sept. 30, 2011
Publication Date:
24 October 2011 (online)
Abstract
Six new lignans, 1–6, along with six known compounds were obtained from the flower buds of Magnolia liliflora Desr. The new lignans were elucidated as (1S*,2R*,5S*,6S*)-2-(3,5-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (1), (1R*,2R*,5R*,6S*)-2-(3,5-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (2), (1R*, 2R*,5R*,6S*)-2,6-bis (3,5-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3), (1R*,2S*,5R*,6R*)-2-(3,4-methylenedioxyphenyl)-6-(3,5-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (4), (7′S*,8R*,8′R*)-3,5′-dimethoxy-3′,4,9′-trihydroxy-7′, 9-epoxy-8,8′-lignan (5), and (7′R*,8′S*)-3,3′,4,5′-tetramethoxy-7-en-7′,9-epoxy-8,8′-lignan (6), by the analysis of 1D and 2D-NMR as well as HRESIMS data. The capacity of compound 1 to protect against damages to the DNA of rat lymphocyte cells induced by UV irradiation was assessed by the comet assay. It showed stronger antigenotoxicity than ascorbic acid from 6 × 10−3 mmol · L−1 to 6 × 10−6 mmol · L−1.
Key words
Magnoliaceae - Magnolia liliflora - lignan - antigenotoxicity - comet assay
References
- 1 Liu Y H, Luo X R, Wu Y F. Flora of China. Vol. 30: Menispermaceae, Magnoliaceae. Beijing: Science Press; 1996: 140-141
- 2 Jung K Y, Kim D S, Oh S R, Park S H, Lee I S, Lee J J, Shin D H, Lee H K. Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii. J Nat Prod. 1998; 61 808-811
- 3 Ho K Y, Tsai C C, Chen C P, Huang J S, Lin C C. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res. 2001; 15 139-141
- 4 Syu W J, Shen C C, Lu J J, Lee G H, Sun C M. Antimicrobial and cytotoxic activities of neolignans from Magnolia officinalis. Chem Biodivers. 2004; 1 530-537
- 5 Youn U J, Chen Q C, Jin W Y, Lee I S, Kim H J, Lee J P, Chang M J, Min B S, Bae K H. Cytotoxic lignans from the stem bark of Magnolia officinalis. J Nat Prod. 2007; 70 1687-1689
- 6 Li D Q. Pharmacopoeia of the P.R.C. Beijing: Chemical and Technologic Press; 2005: 126-127
- 7 Tice R R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J C, Sasaki Y. The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Env Mol Mutagen. 2000; 35 206-221
- 8 Kimura T, Sonoda Y, Iwai N, Satoh M, Yamaguchi M, Izui T, Suda M, Sasaki K, Nakano T. Proliferation and cell death of embryonic primitive erythrocytes. Exp Hematol. 2000; 28 635-641
- 9 Yu P, Wang X L, Yan Q C. Study on protection of procyanidins against UV-induced oxidative damage of lens epitheliaI cells. Int J Ophthalmol. 2010; 10 1477-1480
- 10 Lyons N M, O'Brien N M. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J Dermatol Sci. 2002; 30 73-84
- 11 Singh N P, McCoy M T, Tice R R, Schneider E L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175 184-191
- 12 Agner A R, Bazo A P, Ribeiro L R, Salvadori D M. DNA damage and aberrant crypt foci as putative biomarkers to evaluate the chemopreventive effect of annatto (Bixa orellana L.) in rat colon carcinogenesis. Mutat Res. 2005; 582 146-154
- 13 Méndez-Robles M D, Permady H H, Jaramillo-Flores M E, Lugo-Cervantes E C, Cardador-Martínez A, Canales-Aguirre A A, López-Dellamary F, Cerda-García-Rojas C M, Tamariz J. C-26 and C-30 apocarotenoids from seeds of Ditaxis heterantha with antioxidant activity and protection against DNA oxidative damage. J Nat Prod. 2006; 69 1140-1144
- 14 Chen C C, Huang Y L, Chen H T, Chen Y P, Hsu H Y. On the calcium-antagonistic principles of the flower buds of Magnolia fargesii. Planta Med. 1988; 54 438-440
- 15 Seo S M, Lee H J, Lee O K, Jo H J, Kang H Y, Choi D H, Paik K H, Khan M. Furofuran lignans from the bark of Magnolia kobus. Chem Nat Comp. 2008; 44 419-423
- 16 Miyazawa M, Kasahara H, Kameoka H. Biotransformation of lignans: metabolism of (+)-eudesmin and (+)-magnolin in Spodoptera litura. Phytochemistry. 1995; 39 1027-1030
- 17 Yang G Z, Hu Y, Yang B, Chen Y. Lignans from the bark of Zanthoxylum planispinum. Helv Chim Acta. 2009; 92 1657-1664
- 18 Xie L H, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem Pharm Bull. 2003; 51 508-515
- 19 Xu R S, Ye Y, Zhao W M. Introduction to Natural Products Chemistry. Beijing: Science Press; 2006: 318-320
- 20 Kakisawa H, Chen Y P, Hsij H Y. Lignans in flower buds of Magnolia fargesii. Phytochemistry. 1972; 11 2289-2293
- 21 Yoshida S, Yamanaka T, Miyake T, Moritani Y, Ohmizu H, Iwasaki T. Asymmetric syntheses of lignans utilizing novel diastereoselective Michael addition of cyanohydrin: syntheses of (+)-fargesin and (−)-picropodophyllone. Tetrahedron. 1997; 53 9585-9598
- 22 Mustafayeva K, Di Giorgio C, Elias R, Kerimov Y, Ollivier E, De Méo M. DNA-damaging, mutagenic, and clastogenic activities of gentiopicroside isolated from Cephalaria kotschyi roots. J Nat Prod. 2010; 73 99-103
Dr. Wen-Shu Wang
College of Life and Environmental Sciences
Minzu University of China
Zhongguancun South Avenue 27#
Beijing 100081
P. R. China
Phone: +86 10 68 93 22 42
Fax: +86 10 68 93 69 27
Email: wangws@muc.edu.cn