Planta Med 2012; 78(3): 252-259
DOI: 10.1055/s-0031-1280384
Pharmacokinetic Investigations
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Determination of Decursin, Decursinol Angelate, and Decursinol in Mouse Plasma and Tumor Tissue Using Liquid-Liquid Extraction and HPLC

Li Li1 , 4 , Jinhui Zhang1 , 4 , Ahmad Ali Shaik1 , 2 , Yong Zhang1 , 4 , Lei Wang1 , Chengguo Xing2 , Sung-Hoon Kim1 , 3 , Junxuan Lü1 , 4
  • 1The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
  • 2Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
  • 3Cancer Preventive Material Development Research Center and Institute, College of Oriental Medicine, Kyunghee University, Seoul, Republic of Korea
  • 4Current address: Department of Biomedical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas, USA
Further Information

Publication History

received June 22, 2011 revised Nov. 1, 2011

accepted Nov. 6, 2011

Publication Date:
24 November 2011 (online)

Abstract

The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major hydrophobic phytochemicals in the root of Angelica gigas Nakai (AGN, Korean Angelica), a major traditional medicinal herb. The ethanol extract of AGN and especially the purified decursin and DA have been shown to exhibit antitumor activities by our collaborative team and others. Although decursinol has been identified as a major hydrolysis metabolite of decursin and DA in vivo in previous pharmacokinetic studies with mouse and rat, other recently published results sharply disputed this conclusion. In this study, we set up a practical method for the concurrent analysis of decursin, DA, and decursinol in mouse plasma and tumor tissues by liquid–liquid extraction and HPLC-UV and applied the method to several animal experiments. Plasma or tumor homogenate was extracted directly with ethyl acetate. The extraction efficiency for decursin/DA (quantitated together) and decursinol was between 82–95 % in both mouse plasma and tumor homogenate. The lower limit of quantitation (LLOQ) was approximately 0.25 µg/mL for decursin/DA and 0.2 µg/mL for decursinol in mouse plasma. In a pilot pharmacokinetic study, male C57BL/6 mice were given a single dose of 4.8 mg decursin/DA mixture (∼ 240 mg/kg) per mouse either by oral gavage or intraperitoneal injection. Maximum plasma concentrations for decursin/DA and decursinol were 11.2 and 79.7 µg/mL, respectively, when decursin/DA was administered via intraperitoneal injection, and 0.54 and 14.9 µg/mL via oral gavage. Decursin/DA and decursinol contents in the tumor tissues from nude mouse xenografts correlated very well with those in plasma. Overall, our results confirm the conclusion that the majority of decursin/DA hydrolyze to decursinol in rodent models with a tiny fraction remaining as the intact compounds administered.

References

  • 1 Sarker S D, Nahar L. Natural medicine: the genus Angelica.  Curr Med Chem. 2004;  11 1479-1500
  • 2 Ahn M J, Lee M K, Kim Y C, Sung S H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry.  J Pharm Biomed Anal. 2008;  46 258-266
  • 3 Jiang C, Lee H J, Li G X, Guo J M, Malewicz B, Zhao Y, Lee E O, Lee J H, Kim M S, Kim S H, Lu J X. Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer.  Cancer Res. 2006;  66 453-463
  • 4 Yim D, Singh R P, Agarwal C, Lee S, Chi H, Agarwal R. A novel anticancer agent, decursin, induces G(1) arrest and apoptosis in human prostate carcinoma cells.  Cancer Res. 2005;  65 1035-1044
  • 5 Song G Y, Lee J H, Cho M, Park B S, Kim D E, Oh S. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin.  Mol Pharmacol. 2007;  72 1599-1606
  • 6 Lee H J, Lee E O, Lee J H, Lee K S, Kim K H, Kim S H, Lu J. In vivo anti-cancer activity of Korean Angelica gigas and its major pyranocoumarin decursin.  Am J Chin Med. 2009;  37 127-142
  • 7 Jiang C, Guo J, Wang Z, Xiao B, Lee H J, Lee E O, Kim S H, Lu J. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells.  Breast Cancer Res. 2007;  9 R77
  • 8 Kim W J, Lee M Y, Kim J H, Suk K, Lee W H. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.  Cancer Lett. 2010;  296 35-42
  • 9 Kim W J, Lee S J, Choi Y D, Moon S K. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.  Int J Mol Med. 2010;  25 635-641
  • 10 Son S H, Park K K, Park S K, Kim Y C, Kim Y S, Lee S K, Chung W Y. Decursin and decursinol from Angelica gigas inhibit the lung metastasis of murine colon carcinoma.  Phytother Res. advance online publication 2010;  DOI: 10.1002/ptr.3372
  • 11 Lee S, Lee Y S, Jung S H, Shin K H, Kim B K, Kang S S. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas.  Arch Pharm Res. 2003;  26 727-730
  • 12 Xia Y, Min K H, Lee K. Synthesis and biological evaluation of decursin, prantschimgin and their derivatives.  Bull Korean Chem Soc. 2009;  30 43-48
  • 13 Kim H J, Kim S M, Park K R, Jang H J, Na Y S, Ahn K S, Kim S H. Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway.  Cancer Lett. 2011;  301 29-37
  • 14 Kim H H, Bang S S, Choi J S, Han H, Kim I H. Involvement of PKC and ROS in the cytotoxic of anti-leukemic decursin and its derivatives mechanism and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.  Cancer Lett. 2005;  223 191-201
  • 15 Ahn Q, Jeong S J, Lee H J, Kwon H Y, Han I, Kim H S, Lee E O, Ahn K S, Jung M H, Zhu S, Chen C Y, Kim S H. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells.  Cancer Lett. 2010;  298 212-221
  • 16 Guo J, Jiang C, Wang Z, Lee H J, Hu H, Malewicz B, Lee J H, Baek N I, Jeong J H, Kim D K, Kang K S, Kim S H, Lu J. A novel class of pyranocoumarin anti-androgen receptor signaling compounds.  Mol Cancer Ther. 2007;  6 907-917
  • 17 Jung M H, Lee S H, Ahn E M, Lee Y M. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway.  Carcinogenesis. 2009;  30 655-661
  • 18 Lee Y Y, Lee S, Jin J L, Yun-Choi H S. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas.  Arch Pharm Res. 2003;  26 723-726
  • 19 Li L, Li W, Jung S W, Lee Y M, Kim Y H. Protective effects of decursin and decursinol angelate against amyloid beta-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes.  Biosci Biotechnol Biochem. 2011;  75 434-442
  • 20 Yoo H H, Lee M W, Kim Y C, Yun C H, Kim D H. Mechanism-based inactivation of cytochrome p 450 2A6 by decursinol angelate isolated from Angelica gigas.  Drug Metab Dispos. 2007;  35 1759-1765
  • 21 Park R J, Kim N J, Lee K T, Seo S H. Comparative studies on concentration of decursinol in plasma after oral administration of Angelicae Gigantis Radix extract and combined use of decursin and Cnidii Rhizoma extract or Bupleuri Radix extract in rats.  Korean J Pharmacognosy. 2001;  32 72-78
  • 22 Kim K M, Kim M J, Kang J S. Absorption, distribution, metabolism, and excretion of decursin and decursinol angelate from Angelica gigas Nakai.  J Microbiol Biotechnol. 2009;  19 1569-1572
  • 23 Zhang Y, Shaik A A, Xing C, Chai Y, Li L, Zhang J, Zhang W, Kim S H, Lu J, Jiang C. A synthetic decursin analog with increased in vivo stability suppresses androgen receptor signaling in vitro and in vivo.  Invest New Drugs. advance online publication 2011;  DOI: 10.1007/s10637-011-9738-x
  • 24 Li L, Shaik A A, Zhang J, Nhkata K, Wang L, Zhang Y, Xing C, Kim S H, Lu J. Preparation of penta-O-galloyl-beta-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC.  J Pharm Biomed Anal. 2011;  54 545-550
  • 25 Weon J B, Yang H J, Ma J Y, Ma C J. A HPLC-DAD method for the simultaneous determination of five marker components in the traditional herbal medicine Bangpungtongsung-san.  Pharmacogn Mag. 2011;  7 60-64
  • 26 Kim K Y, Lee S, Cha C J. Biotransformation of plant secondary metabolite decursin by Mycobacterium sp. PYR1001.  J Agric Food Chem. 2010;  58 2931-2934

Dr. Junxuan Lü

Department of Biomedical Sciences
Texas Tech University Health Sciences Center, School of Pharmacy

1300 S. Coulter St

Amarillo, TX 79106

USA

Phone: +1 80 63 56 40 15 ext. 250

Fax: +1 80 63 56 46 43

Email: junxuan.lu@ttuhsc.edu