Planta Med 2012; 78(4): 341-348
DOI: 10.1055/s-0031-1280472
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Paeoniae Radix Reduces PDGF-Stimulated Hepatic Stellate Cell Migration

Jong-Jen Kuo1 , 2 , Chih-Yang Wang1 , Ting-Fang Lee1 , Yi-Tsau Huang1 , 3 [*] , Yun-Lian Lin3 , 4 [*]
  • 1Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
  • 2Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
  • 3National Research Institute of Chinese Medicine, Taipei, Taiwan
  • 4School of Pharmacy, National Taiwan University, Taipei, Taiwan
Weitere Informationen

Publikationsverlauf

received October 21, 2011 revised Nov. 30, 2011

accepted Dec. 2, 2011

Publikationsdatum:
13. Januar 2012 (online)

Abstract

Hepatic stellate cells (HSCs) play a key role in the pathogenesis of liver fibrosis. In chronic liver injury, HSCs undergo transdifferentiation to an activated myofibroblastic phenotype and migrate to injured areas in response to chemotactic factors, producing extracellular matrix proteins such as collagen type I to repair the damage as well as overexpression of α-smooth muscle actin (α-SMA). Paeoniae Radix, the root of Paeonia lactiflora Pall, was investigated for PDGF-BB-induced HSC chemotaxis. Rat HSCs and LX-2, a human HSC cell line, were used for the in vitro experiments. Cell migration was analyzed by wound-healing and transwell assays. An ELISA and a Sircol collagen assay kit were used to detect the expressions of α-SMA and of collagen, respectively. Phosphorylations of mitogen-activated protein kinases, including ERK 1/2, p38, and JNK, were evaluated with immunoblotting. Results indicated that PDGF-BB increased migration as well as α-SMA and collagen expression in HSCs. Paeoniae Radix extracts and its active components, paeonol and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), inhibited PDGF-BB-induced HSC migration and α-SMA and collagen expressions in a concentration-dependent manner. The inhibitory effects were associated with downregulation of PDGF receptor-α, ERK, p38, and JNK activation. Both paeonol and PGG participate in HSC migration, but via differential mechanisms.

Supporting Information

References

  • 1 Senoo H, Yoshikawa K, Mori M, Miura M, Imai K, Mezaki Y. Hepatic stellate cell (Vitamin A-storing cell) and its relative – past, present and future.  Cell Biol Int. 2010;  34 1247-1272
  • 2 Friedman S L. Mechanisms of hepatic fibrogenesis.  Gastroenterology. 2008;  134 1655-1669
  • 3 Wong L, Yamasaki G, Johnson R J, Friedman S L. Induction of β-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture.  J Clin Invest. 1994;  94 1563-1569
  • 4 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells.  Semin Liver Dis. 2001;  21 397-416
  • 5 Ikeda K, Wakahara T, Wang Y Q, Kadoya H, Kawada N, Kaneda K. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation.  Hepatology. 1999;  29 1760-1767
  • 6 Melton A C, Yee H F. Hepatic stellate cell protusions couple platelet-derived growth factor-BB to chemotaxis.  Hepatology. 2007;  45 1446-1453
  • 7 Friedman S L. Closing in on the signals of hepatic fibrosis.  Gastroenterology. 1997;  112 1406-1414
  • 8 Imanishi Y, Maeda N, Otogawa K, Seki S, Matsui H, Kawada N, Arakawa T. Herb medicine Inchin-ko-to (TJ-135) regulates PDGF-BB-dependent signaling pathways of hepatic stellate cells in primary culture and attenuates development of liver fibrosis induced by thioacetamide administration in rats.  J Hepatol. 2004;  41 242-250
  • 9 Lin Y L, Wu C F, Huang Y T. Phenols from the roots of Rheum palmatum attenuates chemotaxis in rat hepatic stellate cells.  Planta Med. 2008;  74 1246-1252
  • 10 Xiao P, Li D P, Yang S L. Modern Chinese materia medica, Volume 1. Beijing: Chemical Industry Press; 2002: 493-500
  • 11 Wang H B, Gu W F, Chu W J, Zhang S, Tang X C, Qin G W. Monoterpene glucosides from Paeonia lactiflora.  J Nat Prod. 2009;  72 1321-1324
  • 12 Braca A, Kiem P V, Yen P H, Nhiem N X, Quang T H, Cuong N X, Minh C V. New monoterpene glycosides from Paeonia lactiflora.  Fitoterapia. 2008;  79 117-120
  • 13 Lin H C, Ding H Y, Ko F N, Teng C M, Wu Y C. Aggregation inhibitory activity of minor acetophenones from Paeonia species.  Planta Med. 1999;  65 595-599
  • 14 Kamiya K, Yoshioka K, Saiki Y, Ikuta A, Satake T. Triterpenoids and flavonoids from Paeonia lactiflora.  Phytochemistry. 1997;  44 141-144
  • 15 Nishizawa M, Yamagishi T, Nonaka G I, Nishioka I, Nagasawa T, Oura H. Tannins and related compounds XII. Isolation and characterization of galloylglucoses from Paeoniae Radix and their effect on urea-nitrogen concentration in rat serum.  Chem Pharm Bull. 1983;  30 2593-2600
  • 16 Baumgartner R R, Steinmann D, Heiss E H, Atanasov A G, Ganzera M, Stuppner H, Dirsch V M. Bioactivity-guided isolation of 1,2,3,4,6-penta-O-galloyl-D-gluco-pyrannose from Paeonia lactiflora roots as a PTP1B inhibitor.  J Nat Prod. 2010;  73 1578-1581
  • 17 Li W L, Zheng H C, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus.  J Ethnopharmacol. 2004;  92 1-21
  • 18 Hsu F L, Lai C W, Cheng J T. Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora.  Planta Med. 1997;  63 323-325
  • 19 Lee S M, Li M L, Tse Y C, Leung S C, Lee M M, Tsui S K, Fung K P, Lee C Y, Waye M M. Paeoniae radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p 53 independent pathway.  Life Sci. 2002;  71 2267-2277
  • 20 Lin H C, Ding H Y, Ko F N, Teng C M, Wu Y C. Aggregation inhibitory activity of minor acetophenones from Paeonia species.  Planta Med. 1999;  65 595-599
  • 21 Xiao L, Wang Y Z, Liu J, Luo X T, Ye Y, Zhu X Z. Effects of paeoniflorin on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of transient middle cerebral artery occlusion in rats.  Life Sci. 2005;  78 413-420
  • 22 Kim H J, Chang E J, Cho S H, Chung S K, Park H D, Choi S W. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora.  Biosci Biotechnol Biochem. 2002;  66 1990-1993
  • 23 Lee T F, Lin Y L, Huang Y T. Kaerophyllin inhibits hepatic stellate cell activation by apoptotic bodies from hepatocytes.  Liver Int. 2011;  31 618-629
  • 24 Friedman S L, Roll F J. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan.  Anal Biochem. 1987;  161 207-218
  • 25 Lin Y L, Wu C H, Huang Y C, Luo M H, Wang C N, Shiao M S, Huang Y T. In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells.  J Ethnopharmacol. 2006;  105 215-222
  • 26 Lin Y L, Wu C F, Huang Y T. Effects of rhubarb on migration of rat hepatic stellate cells.  J Gastroenterol Hepatol. 2009;  24 453-461
  • 27 Lee T F, Lin Y L, Huang Y T. Studies on anti-proliferative effects of phthalides from Ligusticum chuanxiong in hepatic stellate cells.  Planta Med. 2007;  73 527-534
  • 28 Tsai M K, Lin Y L, Huang Y T. Effects of salvianolic acids, A and B on oxidative stress and hepatic fibrosis in rats.  Toxicol Appl Pharmacol. 2010;  242 155-164
  • 29 Lau C H, Chan C M, Chan Y W, Lau K M, Lau T W, Lam F C, Law W T, Che C T, Leung P C, Fung K P, Ho Y Y, Lau C B S. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol.  Phytomedicine. 2007;  14 778-784
  • 30 Li Y, Kim J, Li J, Liu F, Liu X, Himmeldirk K, Ren Y, Wagner T E, Chen X. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway.  Biochem Biophys Res Commun. 2005;  336 430-437
  • 31 Kinnman N, Hultcrantz R, Barbu V, Rey C, Wendum D, Poupon R, Housset C. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.  Lab Invest. 2000;  80 697-707
  • 32 Ballardini G, Esposti S D, Bianchi F B, Degiorgi L B, Faccani A, Biolchini L, Busachi C A, Pisi E. Correlation between Ito cell and fibrogenesis in an experimental model of hepatic fibrosis. A sequential sterological study.  Liver. 1983;  3 58-63
  • 33 Xu W, Guo T, Zhang Y, Jiang X, Zhang Y, Zen K, Yu B, Zhang C Y. The inhibitory effects of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression.  Exp Cell Res. 2010;  317 1083-1092
  • 34 Huang C, Jacobson K, Schaller M D. MAP kinases and cell migration.  J Cell Sci. 2004;  117 4619-4628
  • 35 Huang C, Rajfur Z, Borchers C, Schaller M D, Jacobson K. JNK phosphorylation paxillin and regulates cell migration.  Nature. 2003;  424 219-223
  • 36 Hernandez-Gea V, Friedman S L. Pathogenesis of liver fibrosis.  Annu Rev Pathol Mech Dis. 2011;  6 425-456

1 Both authors contributed equally to this work and as corresponding authors.

Yun-Lian Lin

National Research Institute of Chinese Medicine

Taipei 112

Taiwan

Telefon: +88 62 28 20 19 99 ext. 65 31

Fax: +88 62 28 25 07 43

eMail: yllin@nricm.edu.tw