Semin Reprod Med 2011; 29(4): 283-298
DOI: 10.1055/s-0031-1280914
© Thieme Medical Publishers

Insights into Primary Ovarian Insufficiency through Genetically Engineered Mouse Models

Shannon D. Sullivan1 [*] , Diego H. Castrillon2
  • 1National Institutes of Health, NICHD, and Washington Hospital Center, Washington, DC
  • 2Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
Further Information

Publication History

Publication Date:
04 October 2011 (online)

ABSTRACT

Primary ovarian insufficiency (POI), also known as premature ovarian failure, is a form of hypergonadotropic hypogonadism that causes infertility in ~1% of women <40 years of age. POI has important health consequences for affected patients; however, the mechanisms that cause ovarian dysfunction are poorly understood. Elucidating these mechanisms is paramount to developing better testing and treatment strategies for affected girls and women. For obvious reasons, studies looking directly at the human ovary are extremely limited. Recently, numerous genetically engineered mouse models have been developed to investigate the molecular mechanisms that may be involved in the pathogenesis of POI. Two potential mechanisms may be involved in the development of POI: (1) abnormalities in primordial follicle activation and (2) increased rates of apoptosis of oocytes. Each of these mechanisms may lead to early depletion of ovarian follicular reserve, and thus be a contributing factor in POI. This review addresses current knowledge of molecular mechanisms controlling primordial follicle activation and oocyte apoptosis, as evidenced from various genetic mouse models. Translation of these data into clinically effective treatments or even prevention strategies may improve fertility and quality of life for women with this form of reproductive dysfunction.

REFERENCES

  • 1 Kaufman F, Kogut M D, Donnell G N, Koch H, Goebelsmann U. Ovarian failure in galactosaemia.  Lancet. 1979;  2 (8145) 737-738
  • 2 Nelson L M. Clinical practice. Primary ovarian insufficiency.  N Engl J Med. 2009;  360 (6) 606-614
  • 3 Cramer D W, Xu H, Harlow B L. Family history as a predictor of early menopause.  Fertil Steril. 1995;  64 (4) 740-745
  • 4 Cramer D W, Xu H. Predicting age at menopause.  Maturitas. 1996;  23 (3) 319-326
  • 5 Hubayter Z R, Popat V, Vanderhoof V H et al.. A prospective evaluation of antral follicle function in women with 46,XX spontaneous primary ovarian insufficiency.  Fertil Steril. 2010;  94 (5) 1769-1774
  • 6 Broekmans F J, Visser J A, Laven J S, Broer S L, Themmen A P, Fauser B C. Anti-Müllerian hormone and ovarian dysfunction.  Trends Endocrinol Metab. 2008;  19 (9) 340-347
  • 7 van Rooij I A, Broekmans F J, Scheffer G J et al.. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study.  Fertil Steril. 2005;  83 (4) 979-987
  • 8 van Rooij I A, Broekmans F J, te Velde E R et al.. Serum anti-Müllerian hormone levels: a novel measure of ovarian reserve.  Hum Reprod. 2002;  17 (12) 3065-3071
  • 9 Massin N, Czernichow C, Thibaud E, Kuttenn F, Polak M, Touraine P. Idiopathic premature ovarian failure in 63 young women.  Horm Res. 2006;  65 (2) 89-95
  • 10 McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles.  Endocr Rev. 2000;  21 (2) 200-214
  • 11 Tingen C, Kim A, Woodruff T K. The primordial pool of follicles and nest breakdown in mammalian ovaries.  Mol Hum Reprod. 2009;  15 (12) 795-803
  • 12 Pepling M E, Spradling A C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.  Dev Biol. 2001;  234 (2) 339-351
  • 13 Ohno S, Klinger H P, Atkin N B. Human oogenesis.  Cytogenetics. 1962;  1 42-51
  • 14 Morita Y, Tilly J L. Oocyte apoptosis: like sand through an hourglass.  Dev Biol. 1999;  213 (1) 1-17
  • 15 Tilly J L, Tilly K I, Perez G I. The genes of cell death and cellular susceptibility to apoptosis in the ovary: a hypothesis.  Cell Death Differ. 1997;  4 (3) 180-187
  • 16 Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results.  Hum Reprod. 1986;  1 (2) 81-87
  • 17 Hirshfield A N. Development of follicles in the mammalian ovary.  Int Rev Cytol. 1991;  124 43-101
  • 18 Cully M, You H, Levine A J, Mak T W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis.  Nat Rev Cancer. 2006;  6 (3) 184-192
  • 19 Engelman J A, Luo J, Cantley L C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.  Nat Rev Genet. 2006;  7 (8) 606-619
  • 20 Manning B D, Cantley L C. AKT/PKB signaling: navigating downstream.  Cell. 2007;  129 (7) 1261-1274
  • 21 Fritsche L, Weigert C, Häring H U, Lehmann R. How insulin receptor substrate proteins regulate the metabolic capacity of the liver—implications for health and disease.  Curr Med Chem. 2008;  15 (13) 1316-1329
  • 22 Hirsch E, Katanaev V L, Garlanda C et al.. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation.  Science. 2000;  287 (5455) 1049-1053
  • 23 Accili D, Arden K C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation.  Cell. 2004;  117 (4) 421-426
  • 24 Paik J H, Kollipara R, Chu G et al.. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis.  Cell. 2007;  128 (2) 309-323
  • 25 Tothova Z, Kollipara R, Huntly B J et al.. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.  Cell. 2007;  128 (2) 325-339
  • 26 van der Horst A, Burgering B M. Stressing the role of FoxO proteins in lifespan and disease.  Nat Rev Mol Cell Biol. 2007;  8 (6) 440-450
  • 27 John G B, Shirley L J, Gallardo T D, Castrillon D H. Specificity of the requirement for Foxo3 in primordial follicle activation.  Reproduction. 2007;  133 (5) 855-863
  • 28 Castrillon D H, Miao L, Kollipara R, Horner J W, DePinho R A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a.  Science. 2003;  301 (5630) 215-218
  • 29 Hosaka T, Biggs III W H, Tieu D et al.. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification.  Proc Natl Acad Sci U S A. 2004;  101 (9) 2975-2980
  • 30 Gallardo T, Shirley L, John G B, Castrillon D H. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre.  Genesis. 2007;  45 (6) 413-417
  • 31 Liu L, Rajareddy S, Reddy P et al.. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a.  Development. 2007;  134 (1) 199-209
  • 32 John G B, Gallardo T D, Shirley L J, Castrillon D H. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth.  Dev Biol. 2008;  321 (1) 197-204
  • 33 Reddy P, Liu L, Adhikari D et al.. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool.  Science. 2008;  319 (5863) 611-613
  • 34 Gallardo T D, John G B, Bradshaw K et al.. Sequence variation at the human FOXO3 locus: a study of premature ovarian failure and primary amenorrhea.  Hum Reprod. 2008;  23 (1) 216-221
  • 35 Watkins W J, Umbers A J, Woad K J et al.. Mutational screening of FOXO3A and FOXO1A in women with premature ovarian failure.  Fertil Steril. 2006;  86 (5) 1518-1521
  • 36 Li J, Kawamura K, Cheng Y et al.. Activation of dormant ovarian follicles to generate mature eggs.  Proc Natl Acad Sci U S A. 2010;  107 (22) 10280-10284
  • 37 Guertin D A, Sabatini D M. Defining the role of mTOR in cancer.  Cancer Cell. 2007;  12 (1) 9-22
  • 38 Orlova K A, Crino P B. The tuberous sclerosis complex.  Ann N Y Acad Sci. 2010;  1184 87-105
  • 39 Chiang G G, Abraham R T. Targeting the mTOR signaling network in cancer.  Trends Mol Med. 2007;  13 (10) 433-442
  • 40 Carnero A. The PKB/AKT pathway in cancer.  Curr Pharm Des. 2010;  16 (1) 34-44
  • 41 Adhikari D, Zheng W, Shen Y et al.. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles.  Hum Mol Genet. 2010;  19 (3) 397-410
  • 42 Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles.  Trends Endocrinol Metab. 2010;  21 (2) 96-103
  • 43 Reddy P, Adhikari D, Zheng W et al.. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles.  Hum Mol Genet. 2009;  18 (15) 2813-2824
  • 44 Adhikari D, Flohr G, Gorre N et al.. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles.  Mol Hum Reprod. 2009;  15 (12) 765-770
  • 45 Harrison D E, Strong R, Sharp Z D et al.. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.  Nature. 2009;  460 (7253) 392-395
  • 46 Nelson J F, Karelus K, Bergman M D, Felicio L S. Neuroendocrine involvement in aging: evidence from studies of reproductive aging and caloric restriction.  Neurobiol Aging. 1995;  16 (5) 837-843 discussion 855-856
  • 47 Da Silva-Buttkus P, Marcelli G, Franks S, Stark J, Hardy K. Inferring biological mechanisms from spatial analysis: prediction of a local inhibitor in the ovary.  Proc Natl Acad Sci U S A. 2009;  106 (2) 456-461
  • 48 Skinner M K. Regulation of primordial follicle assembly and development.  Hum Reprod Update. 2005;  11 (5) 461-471
  • 49 Kevenaar M E, Meerasahib M F, Kramer P et al.. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice.  Endocrinology. 2006;  147 (7) 3228-3234
  • 50 La Marca A, Broekmans F J, Volpe A, Fauser B C, Macklon N S. ESHRE Special Interest Group for Reproductive Endocrinology--AMH Round Table . Anti-Mullerian hormone (AMH): what do we still need to know?.  Hum Reprod. 2009;  24 (9) 2264-2275
  • 51 Behringer R R, Finegold M J, Cate R L. Müllerian-inhibiting substance function during mammalian sexual development.  Cell. 1994;  79 (3) 415-425
  • 52 Durlinger A L, Kramer P, Karels B et al.. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.  Endocrinology. 1999;  140 (12) 5789-5796
  • 53 Manova K, Huang E J, Angeles M et al.. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia.  Dev Biol. 1993;  157 (1) 85-99
  • 54 Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis.  Cell Mol Life Sci. 2006;  63 (5) 579-590
  • 55 Hutt K J, McLaughlin E A, Holland M K. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis.  Mol Hum Reprod. 2006;  12 (2) 61-69
  • 56 Liu K, Rajareddy S, Liu L et al.. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer.  Dev Biol. 2006;  299 (1) 1-11
  • 57 Thomas F H, Vanderhyden B C. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth.  Reprod Biol Endocrinol. 2006;  4 19
  • 58 Tilly J L. Commuting the death sentence: how oocytes strive to survive.  Nat Rev Mol Cell Biol. 2001;  2 (11) 838-848
  • 59 Zwain I H, Amato P. cAMP-induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and down-regulation of clusterin.  Endocr Res. 2001;  27 (1–2) 233-249
  • 60 Minn A J, Boise L H, Thompson C B. Bcl-x(S) antagonizes the protective effects of Bcl-x(L).  J Biol Chem. 1996;  271 (11) 6306-6312
  • 61 Miyashita T, Krajewski S, Krajewska M et al.. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo.  Oncogene. 1994;  9 (6) 1799-1805
  • 62 Ratts V S, Flaws J A, Kolp R, Sorenson C M, Tilly J L. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad.  Endocrinology. 1995;  136 (8) 3665-3668
  • 63 Perez G I, Robles R, Knudson C M, Flaws J A, Korsmeyer S J, Tilly J L. Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency.  Nat Genet. 1999;  21 (2) 200-203
  • 64 Perez G I, Jurisicova A, Matikainen T et al.. A central role for ceramide in the age-related acceleration of apoptosis in the female germline.  FASEB J. 2005;  19 (7) 860-862
  • 65 Felici M D, Carlo A D, Pesce M, Iona S, Farrace M G, Piacentini M. Bcl-2 and Bax regulation of apoptosis in germ cells during prenatal oogenesis in the mouse embryo.  Cell Death Differ. 1999;  6 (9) 908-915
  • 66 Greenfeld C R, Pepling M E, Babus J K, Furth P A, Flaws J A. BAX regulates follicular endowment in mice.  Reproduction. 2007;  133 (5) 865-876
  • 67 Rucker III E B, Dierisseau P, Wagner K U et al.. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis.  Mol Endocrinol. 2000;  14 (7) 1038-1052
  • 68 Matikainen T, Perez G I, Jurisicova A et al.. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals.  Nat Genet. 2001;  28 (4) 355-360
  • 69 Diatlovitskaia E V, Andreasian G O, Malykh IaN. Human ovarian ceramides and gangliosides in aging.  Biokhimiia. 1995;  60 (8) 1302-1306
  • 70 Perez G I, Tilly J L. Cumulus cells are required for the increased apoptotic potential in oocytes of aged mice.  Hum Reprod. 1997;  12 (12) 2781-2783
  • 71 Morita Y, Perez G I, Paris F et al.. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy.  Nat Med. 2000;  6 (10) 1109-1114
  • 72 Suh E K, Yang A, Kettenbach A et al.. p63 protects the female germ line during meiotic arrest.  Nature. 2006;  444 (7119) 624-628
  • 73 Gonfloni S, Di Tella L, Caldarola S et al.. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death.  Nat Med. 2009;  15 (10) 1179-1185
  • 74 Livera G, Petre-Lazar B, Guerquin M J, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis.  Reproduction. 2008;  135 (1) 3-12
  • 75 Pru J K, Kaneko-Tarui T, Jurisicova A, Kashiwagi A, Selesniemi K, Tilly J L. Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons.  Reprod Sci. 2009;  16 (4) 347-356
  • 76 Luborsky J L, Meyer P, Sowers M F, Gold E B, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition.  Hum Reprod. 2003;  18 (1) 199-206
  • 77 Jurisicova A, Taniuchi A, Li H et al.. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri.  J Clin Invest. 2007;  117 (12) 3971-3978
  • 78 Robles R, Morita Y, Mann K K et al.. The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse.  Endocrinology. 2000;  141 (1) 450-453
  • 79 Hsueh A J, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process.  Endocr Rev. 1994;  15 (6) 707-724
  • 80 Hakuno N, Koji T, Yano T et al.. Fas/APO-1/CD95 system as a mediator of granulosa cell apoptosis in ovarian follicle atresia.  Endocrinology. 1996;  137 (5) 1938-1948
  • 81 Hughes Jr F M, Gorospe W C. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia.  Endocrinology. 1991;  129 (5) 2415-2422
  • 82 Tilly J L, Tilly K I, Kenton M L, Johnson A L. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels.  Endocrinology. 1995;  136 (1) 232-241
  • 83 Chun S Y, Eisenhauer K M, Minami S, Billig H, Perlas E, Hsueh A J. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor.  Endocrinology. 1996;  137 (4) 1447-1456
  • 84 Kumar T R, Wang Y, Lu N, Matzuk M M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility.  Nat Genet. 1997;  15 (2) 201-204
  • 85 Dhanasekaran N, Sheela Rani C S, Moudgal N R. Studies on follicular atresia: lysosomal enzyme activity and gonadotropin receptors of granulosa cells following administration or withdrawal of gonadotropins in the rat.  Mol Cell Endocrinol. 1983;  33 (1) 97-112
  • 86 Gebauer G, Peter A T, Onesime D, Dhanasekaran N. Apoptosis of ovarian granulosa cells: correlation with the reduced activity of ERK-signaling module.  J Cell Biochem. 1999;  75 (4) 547-554
  • 87 Balla A, Danilovich N, Yang Y, Sairam M R. Dynamics of ovarian development in the FORKO immature mouse: structural and functional implications for ovarian reserve.  Biol Reprod. 2003;  69 (4) 1281-1293
  • 88 Yang Y, Balla A, Danilovich N, Sairam M R. Developmental and molecular aberrations associated with deterioration of oogenesis during complete or partial follicle-stimulating hormone receptor deficiency in mice.  Biol Reprod. 2003;  69 (4) 1294-1302
  • 89 Danilovich N, Sairam M R. Haploinsufficiency of the follicle-stimulating hormone receptor accelerates oocyte loss inducing early reproductive senescence and biological aging in mice.  Biol Reprod. 2002;  67 (2) 361-369
  • 90 Jin X, Han C S, Yu F Q, Wei P, Hu Z Y, Liu Y X. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction.  Mol Reprod Dev. 2005;  70 (1) 82-90
  • 91 Liu H, Luo L L, Qian Y S et al.. FOXO3a is involved in the apoptosis of naked oocytes and oocytes of primordial follicles from neonatal rat ovaries.  Biochem Biophys Res Commun. 2009;  381 (4) 722-727
  • 92 Brown C, LaRocca J, Pietruska J et al.. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKB alpha/Akt1.  Biol Reprod. 2010;  82 (2) 246-256
  • 93 Serve H, Hsu Y C, Besmer P. Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells.  J Biol Chem. 1994;  269 (8) 6026-6030
  • 94 Kissel H, Timokhina I, Hardy M P et al.. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses.  EMBO J. 2000;  19 (6) 1312-1326
  • 95 John G B, Shidler M J, Besmer P, Castrillon D H. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation.  Dev Biol. 2009;  331 (2) 292-299
  • 96 Woodruff T K. The Oncofertility Consortium—addressing fertility in young people with cancer.  Nat Rev Clin Oncol. 2010;  7 (8) 466-475

1 Current affiliation: Washington Hospital Center, Department of Endocrinology, Washington, D.C.

Diego H CastrillonM.D. Ph.D. 

Associate Professor, Department of Pathology, Room NB6.452, UT Southwestern Medical Center

6000 Harry Hines Boulevard, Dallas, TX 75390-9072

Email: diego.castrillon@utsouthwestern.edu