J Reconstr Microsurg 2011; 27(6): 355-364
DOI: 10.1055/s-0031-1281515
© Thieme Medical Publishers

The Application of Indocyanine Green Fluorescence Angiography in Plastic Surgery

Daniel Z. Liu1 , David W. Mathes1 , Michael R. Zenn2 , Peter C. Neligan1
  • 1Division of Plastic Surgery, Department of Surgery, University of Washington School of Medicine, Seattle, Washington
  • 2Division of Plastic Surgery, Department of Surgery, Duke University School of Medicine, Durham, North Carolina
Further Information

Publication History

Publication Date:
29 June 2011 (online)

ABSTRACT

In flap reconstruction of complex defects the perfusion of the reconstructive flap is critical to the ultimate success of the reconstruction. This is especially true in perforator-based flaps where it can be difficult to assess the adequacy of perfusion in the operating room. However, the ability to definitively determine the degree of flap perfusion is imperative to clinical decision-making. An emerging technology using near-infrared angiography with indocyanine green (ICG) dye may significantly improve the immediacy and accuracy of the assessment of flap perfusion. This article reviews the current state of ICG angiography and its use in clinical practice in plastic surgery. There are 17 case series, including a total of 386 patients, published in the literature using ICG angiography in various plastic surgical procedures. ICG angiography may aid flap design and assessment in the intraoperative/postoperative settings, reduce complications, and ultimately improve outcomes.

REFERENCES

  • 1 Blondeel P N, Beyens G, Verhaeghe R et al.. Doppler flowmetry in the planning of perforator flaps.  Br J Plast Surg. 1998;  51 (3) 202-209
  • 2 Dublin B A, Karp N S, Kasabian A K, Kolker A R, Shah M H. Selective use of preoperative lower extremity arteriography in free flap reconstruction.  Ann Plast Surg. 1997;  38 (4) 404-407
  • 3 Giunta R E, Geisweid A, Feller A M. The value of preoperative Doppler sonography for planning free perforator flaps.  Plast Reconstr Surg. 2000;  105 (7) 2381-2386
  • 4 Hallock G G. Doppler sonography and color duplex imaging for planning a perforator flap.  Clin Plast Surg. 2003;  30 (3) 347-357 v-vi
  • 5 Itoh Y, Arai K. Use of recovery-enhanced thermography to localize cutaneous perforators.  Ann Plast Surg. 1995;  34 (5) 507-511
  • 6 Komuro Y, Iwata H, Inoue M, Yanai A. Versatility of scanning laser Doppler imaging to detect cutaneous perforators.  Ann Plast Surg. 2002;  48 (6) 613-616
  • 7 Masia J, Clavero J A, Larrañaga J R, Alomar X, Pons G, Serret P. Multidetector-row computed tomography in the planning of abdominal perforator flaps.  J Plast Reconstr Aesthet Surg. 2006;  59 (6) 594-599
  • 8 Mast B A. Comparison of magnetic resonance angiography and digital subtraction angiography for visualization of lower extremity arteries.  Ann Plast Surg. 2001;  46 (3) 261-264
  • 9 Miller J R, Potparić Z, Colen L B, Sorrell K, Carraway J H. The accuracy of duplex ultrasonography in the planning of skin flaps in the lower extremity.  Plast Reconstr Surg. 1995;  95 (7) 1221-1227
  • 10 Benson R C, Kues H A. Fluorescence properties of indocyanine green as related to angiography.  Phys Med Biol. 1978;  23 (1) 159-163
  • 11 Eren S, Rübben A, Krein R, Larkin G, Hettich R. Assessment of microcirculation of an axial skin flap using indocyanine green fluorescence angiography.  Plast Reconstr Surg. 1995;  96 (7) 1636-1649
  • 12 Mothes H, Dönicke T, Friedel R, Simon M, Markgraf E, Bach O. Indocyanine-green fluorescence video angiography used clinically to evaluate tissue perfusion in microsurgery.  J Trauma. 2004;  57 (5) 1018-1024
  • 13 Still J, Law E, Dawson J, Bracci S, Island T, Holtz J. Evaluation of the circulation of reconstructive flaps using laser-induced fluorescence of indocyanine green.  Ann Plast Surg. 1999;  42 (3) 266-274
  • 14 Eren S, Krein R, Hafemann B. Objective evaluation of the microcirculation in the skin with indocyanine green angiography (ICGA). A method for the clinic?.  Handchir Mikrochir Plast Chir. 1995;  27 (6) 307-314
  • 15 Reuthebuch O, Häussler A, Genoni M et al.. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting.  Chest. 2004;  125 (2) 418-424
  • 16 Desai N, Fremes S E. Intraoperative indocyanine green angiography: ready for prime time? [Letter to the Editor.]  J Thorac Cardiovasc Surg. 2007;  133 (5) 1396-1397
  • 17 Desai N D, Miwa S, Kodama D et al.. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts.  J Thorac Cardiovasc Surg. 2006;  132 (3) 585-594
  • 18 Azuma R, Morimoto Y, Masumoto K et al.. Detection of skin perforators by indocyanine green fluorescence nearly infrared angiography.  Plast Reconstr Surg. 2008;  122 (4) 1062-1067
  • 19 Betz C S, Zhorzel S, Schachenmayr H et al.. Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited Indocyanine Green: preliminary results.  J Plast Reconstr Aesthet Surg. 2009;  62 (12) 1602-1608
  • 20 Giunta R E, Holzbach T, Taskov C et al.. Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model.  Br J Plast Surg. 2005;  58 (5) 695-701
  • 21 Holm C, Mayr M, Höfter E, Becker A, Pfeiffer U J, Mühlbauer W. Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green.  Br J Plast Surg. 2002;  55 (8) 635-644
  • 22 Holm C, Tegeler J, Mayr M, Becker A, Pfeiffer U J, Mühlbauer W. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience.  Microsurgery. 2002;  22 (7) 278-287
  • 23 Krishnan K G, Schackert G, Steinmeier R. Near-infrared angiography and prediction of postoperative complications in various types of integumentary flaps.  Plast Reconstr Surg. 2004;  114 (5) 1361-1362
  • 24 Krishnan K G, Schackert G, Steinmeier R. The role of near-infrared angiography in the assessment of post-operative venous congestion in random pattern, pedicled island and free flaps.  Br J Plast Surg. 2005;  58 (3) 330-338
  • 25 Rübben A, Eren S, Krein R, Younossi H, Böhler U, Wienert V. Infrared videoangiofluorography of the skin with indocyanine green—rat random cutaneous flap model and results in man.  Microvasc Res. 1994;  47 (2) 240-251
  • 26 Matsui A, Lee B T, Winer J H, Kianzad V, Frangioni J V. Image-guided perforator flap design using invisible near-infrared light and validation with x-ray angiography.  Ann Plast Surg. 2009;  63 (3) 327-330
  • 27 Matsui A, Lee B T, Winer J H, Laurence R G, Frangioni J V. Quantitative assessment of perfusion and vascular compromise in perforator flaps using a near-infrared fluorescence-guided imaging system.  Plast Reconstr Surg. 2009;  124 (2) 451-460
  • 28 Matsui A, Lee B T, Winer J H, Vooght C S, Laurence R G, Frangioni J V. Real-time intraoperative near-infrared fluorescence angiography for perforator identification and flap design.  Plast Reconstr Surg. 2009;  123 (3) 125e-127e
  • 29 Fox I J, Wood E H. Applications of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye.  Proc Staff Meet Mayo Clin. 1957;  32 (19) 541-550
  • 30 Fox I J, Wood E H. Indocyanine green: physical and physiologic properties.  Proc Staff Meet Mayo Clin. 1960;  35 732-744
  • 31 Leevy C M, Mendenhall C L, Lesko W, Howard M M. Estimation of hepatic blood flow with indocyanine green.  J Clin Invest. 1962;  41 1169-1179
  • 32 Flower R W. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye.  Invest Ophthalmol. 1973;  12 (12) 881-895
  • 33 Flower R W, Hochheimer B F. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography.  Johns Hopkins Med J. 1976;  138 (2) 33-42
  • 34 Muckle T J. Plasma proteins binding of indocyanine green.  Biochem Med. 1976;  15 (1) 17-21
  • 35 Meijer D K, Weert B, Vermeer G A. Pharmacokinetics of biliary excretion in man. VI. Indocyanine green.  Eur J Clin Pharmacol. 1988;  35 (3) 295-303
  • 36 Benya R, Quintana J, Brundage B. Adverse reactions to indocyanine green: a case report and a review of the literature.  Cathet Cardiovasc Diagn. 1989;  17 (4) 231-233
  • 37 Speich R, Saesseli B, Hoffmann U, Neftel K A, Reichen J. Anaphylactoid reactions after indocyanine-green administration.  Ann Intern Med. 1988;  109 (4) 345-346
  • 38 Wolf S, Arend O, Schulte K, Reim M. Severe anaphylactic reaction after indocyanine green fluorescence angiography.  Am J Ophthalmol. 1992;  114 (5) 638-639
  • 39 Obana A, Miki T, Hayashi K et al.. Survey of complications of indocyanine green angiography in Japan.  Am J Ophthalmol. 1994;  118 (6) 749-753
  • 40 Hope-Ross M, Yannuzzi L A, Gragoudas E S et al.. Adverse reactions due to indocyanine green.  Ophthalmology. 1994;  101 (3) 529-533
  • 41 Lee B T, Matsui A, Hutteman M et al.. Intraoperative near-infrared fluorescence imaging in perforator flap reconstruction: current research and early clinical experience.  J Reconstr Microsurg. 2010;  26 (1) 59-65
  • 42 Lee B T, Hutteman M, Gioux S et al.. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction.  Plast Reconstr Surg. 2010;  126 (5) 1472-1481
  • 43 Matsui A, Lee B T, Winer J H, Laurence R G, Frangioni J V. Submental perforator flap design with a near-infrared fluorescence imaging system: the relationship among number of perforators, flap perfusion, and venous drainage.  Plast Reconstr Surg. 2009;  124 (4) 1098-1104
  • 44 Matsui A, Lee B T, Winer J H, Laurence R G, Frangioni J V. Predictive capability of near-infrared fluorescence angiography in submental perforator flap survival.  Plast Reconstr Surg. 2010;  126 (5) 1518-1527
  • 45 de la Torre J, Hedden W, Grant III J H, Gardner P M, Fix R J, Vásconez L O. Retrospective review of the internal Doppler probe for intra- and postoperative microvascular surveillance.  J Reconstr Microsurg. 2003;  19 (5) 287-290
  • 46 Holm C, Mayr M, Höfter E, Dornseifer U, Ninkovic M. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study.  Microsurgery. 2009;  29 (7) 509-514
  • 47 Holm C, Dornseifer U, Sturtz G, Basso G, Schuster T, Ninkovic M. The intrinsic transit time of free microvascular flaps: clinical and prognostic implications.  Microsurgery. 2010;  30 (2) 91-96
  • 48 Holm C, Dornseifer U, Sturtz G, Ninkovic M. Sensitivity and specificity of ICG angiography in free flap reexploration.  J Reconstr Microsurg. 2010;  26 (5) 311-316
  • 49 Mücke T, Wolff K D, Wagenpfeil S, Hölzle F, Scholz M. Reliability of near-infrared angiography and micro-Doppler sonography for evaluating microvascular anastomoses.  Plast Reconstr Surg. 2010;  126 (5) 1506-1514
  • 50 Pestana I A, Coan B, Erdmann D, Marcus J, Levin L S, Zenn M R. Early experience with fluorescent angiography in free-tissue transfer reconstruction.  Plast Reconstr Surg. 2009;  123 (4) 1239-1244
  • 51 Yamaguchi S, De Lorenzi F, Petit J Y et al.. The “perfusion map” of the unipedicled TRAM flap to reduce postoperative partial necrosis.  Ann Plast Surg. 2004;  53 (3) 205-209
  • 52 Holm C, Mayr M, Höfter E, Raab N, Ninkovic M. Interindividual variability of the SIEA Angiosome: effects on operative strategies in breast reconstruction.  Plast Reconstr Surg. 2008;  122 (6) 1612-1620
  • 53 Holm C, Mayr M, Höfter E, Ninkovic M. Perfusion zones of the DIEP flap revisited: a clinical study.  Plast Reconstr Surg. 2006;  117 (1) 37-43
  • 54 Newman M I, Samson M C. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction.  J Reconstr Microsurg. 2009;  25 (1) 21-26
  • 55 Komorowska-Timek E, Gurtner G C. Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction.  Plast Reconstr Surg. 2010;  125 (4) 1065-1073
  • 56 Mohebali J, Gottlieb L J, Agarwal J P. Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography.  J Reconstr Microsurg. 2010;  26 (2) 131-135
  • 57 Ogata F, Azuma R, Kikuchi M, Koshima I, Morimoto Y. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling.  Ann Plast Surg. 2007;  58 (6) 652-655
  • 58 Unno N, Inuzuka K, Suzuki M et al.. Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema.  J Vasc Surg. 2007;  45 (5) 1016-1021
  • 59 Unno N, Nishiyama M, Suzuki M et al.. Quantitative lymph imaging for assessment of lymph function using indocyanine green fluorescence lymphography.  Eur J Vasc Endovasc Surg. 2008;  36 (2) 230-236
  • 60 Ogata F, Narushima M, Mihara M, Azuma R, Morimoto Y, Koshima I. Intraoperative lymphography using indocyanine green dye for near-infrared fluorescence labeling in lymphedema.  Ann Plast Surg. 2007;  59 (2) 180-184
  • 61 Noguchi M, Yokoi M, Nakano Y. Axillary reverse mapping with indocyanine fluorescence imaging in patients with breast cancer.  J Surg Oncol. 2010;  101 (3) 217-221

David W MathesM.D. 

Division of Plastic Surgery, Department of Surgery, University of Washington School of Medicine

Box 356410, 1959 NE Pacific Street, Seattle, WA 98195-6410

Email: dwmathes@u.washington.edu