RSS-Feed abonnieren
DOI: 10.1055/s-0031-1281685
© Georg Thieme Verlag KG Stuttgart · New York
MRT-basierte Knorpelvolumetrie nach Kreuzbandersatzplastik in Korrelation mit qualitativen Gelenkveränderungen und dem klinischen Outcome. Gibt es Hinweise auf frühzeitige posttraumatische degenerative Veränderungen?
MRI Based Volumetric Assessment of Knee Cartilage after ACL-Reconstruction, Correlated with Qualitative Morphologic Changes in the Joint and with Clinical Outcome. Is there Evidence for Early Posttraumatic Degeneration?Publikationsverlauf
eingereicht: 17.5.2011
angenommen: 1.8.2011
Publikationsdatum:
28. September 2011 (online)

Zusammenfassung
Ziel: Ziel unserer Pilotstudie war es zu untersuchen, welche quantitativen und qualitativen, auf eine frühe posttraumatische OA-Entstehung hinweisende, Veränderungen des Knieknorpels und -gelenks 4 Jahre nach einer VKB-Ersatzplastik mittels der MRT erfasst werden können und wie diese mit dem klinischen Outcome (CO) korrelieren. Material und Methoden:9 Patienten wurden post-OP und 4 Jahre später bei 1,5 T untersucht. Mittels einer hochauflösenden T 1-w-fs-FLASH-3D-Sequenz erfolgte eine quantitative Bestimmung des Knorpelvolumens (cVol) und der mittleren Knorpeldicke (mTh) des retropatellaren, femoralen und tibialen Gelenkknorpels. Anhand PD-w-fs und T 1-w-fs Sequenzen wurden qualitative Veränderungen der gelenkbildenden Strukturen auf der Basis des WORMS-Score ermittelt. Das CO wurde von einem erfahrenen Orthopäden in folgenden Tests erhoben: Lysholm-Score, OAK-Score, Tegner-Aktivitäts-Score (TAS) und Arthrometer KT-1000-Test. Ergebnisse: Die mittlere Änderung des cVol betrug ca. –1,8 % (range: –5,9 %; + 0,7 %), die der mTh ca. –0,8 % (range: –3,0 %; + 1,1 %). In keinem Kompartiment erwiesen sich die Änderungen als signifikant (95 %-KI). 3 Patienten zeigten neue peripatellare Osteophyten, akute traumaassoziierte Veränderungen waren insgesamt deutlich seltener. CO: Der Lysholm- und OAK-Score betrug im Mittel 90 bzw. 86 Pkt. Der TAS betrug im Mittel 4,3 Pkt. Die mittlere max. tibiale Translation lag bei 5,2 mm (gesunde Gegenseite 6,7 mm). Schlussfolgerung: 4 Jahre nach VKB-Ersatzplastik konnten mit der qMRT im Kniegelenk eine Tendenz hin zu kleineren Werten jedoch keine signifikanten Veränderungen des cVol und der mTh gemessen werden. Neue Osteophyten als morphologische Hinweise auf eine OA korrelierten nicht mit dem überwiegend guten CO. Unserer durch die Kollektivgröße limitierten Studie sollten weitere quantitative und semiquantitative, strukturelle MRT-Untersuchungen des Knorpels und Knochens folgen um die frühzeitige diagnostische Erfassung einer OA-Entstehung weiter voranzutreiben.
Abstract
Purpose: The purpose of this study was to analyze potential quantitative and qualitative changes of the knee cartilage and joint indicative of early posttraumatic OA 4 years after ACL-reconstruction and to correlate the MRI-findings with the clinical outcome (CO). Materials and Methods: 1.5 T MRI-scans were performed on 9 patients post-op and 4 years later. Using a high-resolution T 1-w-fs-FLASH-3D-sequence cartilage volume (cVol) and thickness (mTh) were quantified. Using standard PD-w fs and T 1-w sequences qualitative changes of the joint structures were analyzed based on the WORMS-score. CO was rated by an orthopaedic surgeon using Lysholm-score, OAK-score, Tegner-activity-score (TAS), and Arthrometer KT-1000 testing. Results: Mean changes of cVol were –1.8 % (range: –5.9 %; + 0.7 %) and of mTh –0.8 % (range: –3.0 %; + 1.1 %). No significant change (95 %-CI) could be identified for any compartment. Three patients developed new peripatellar ostheophytes, acute trauma related changes mostly decreased. Mean outcome of Lysholm-score and OAK-score were 90 pts and 86 pts, mean TAS was 4.3 pts. Average maximum tibial translation reached 5.2 mm comparing to 6.7 mm on the healthy contralateral side. Conclusion: Despite a tendency towards decreased cVol and mTh 4 years after ACL-reconstruction qMRI revealed no significant cartilage loss. Newly developing osteophytes did not match with the observed good CO. This small pilot study motivates future quantitative and qualitative-structural MRI-based assessment of articular cartilage and other joint structures in order to improve diagnostic tools for the detection of early OA.
Key words
cartilage - quantitative MR-imaging - osteoarthritis
Literatur
- 1
Fu F H, Bennett C H, Ma C B et al.
Current Trends in Anterior Cruciate Ligament Reconstruction.
The American Journal of Sports Medicine.
2000;
28
124-130
MissingFormLabel
- 2
Cotta H, Niethard F U.
Biomechanische und biochemische Grundlagen der Entstehung einer posttraumatischen
Arthrose.
Der Chirurg.
1979;
50
595-598
MissingFormLabel
- 3
Wilder F V, Hall B J, Barrett J P et al.
History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological
assessment. The Clearwater Osteoarthritis Study.
Osteoarthritis and cartilage.
2002;
10
611-616
MissingFormLabel
- 4
Lohmander L S, Englund P M, Dahl L L et al.
The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
The American journal of sports medicine.
2007;
35
1756-1769
MissingFormLabel
- 5
Batiste D L, Kirkley A, Laverty S et al.
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection
model of osteoarthritis using MRI and micro-CT.
Osteoarthritis and cartilage.
2004;
12
986-996
MissingFormLabel
- 6
Destatis S B.
Krankheitskosten. Fachserie 12.
2010;
Reihe 7.2
45
MissingFormLabel
- 7
Altman R, Asch E, Bloch D et al.
Development of criteria for the classification and reporting of osteoarthritis. Classification
of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the
American Rheumatism Association.
Arthritis and rheumatism.
1986;
29
1039-1049
MissingFormLabel
- 8
Peterfy C G, Guermazi A, Zaim S et al.
Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis.
Osteoarthritis and cartilage.
2004;
12
177-190
MissingFormLabel
- 9
Eckstein F, Glaser C.
Measuring cartilage morphology with quantitative magnetic resonance imaging.
Seminars in musculoskeletal radiology.
2004;
8
329-353
MissingFormLabel
- 10
Link T M, Steinbach L S, Ghosh S et al.
Osteoarthritis: MR imaging findings in different stages of disease and correlation
with clinical findings.
Radiology.
2003;
226
373-381
MissingFormLabel
- 11
Eckstein F, Tieschky M, Faber S C et al.
Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging
study.
Radiology.
1998;
207
243-248
MissingFormLabel
- 12
Horng A, Raya J, Zscharn M et al.
[Locoregional deformation pattern of the patellar cartilage after different loading
types – high-resolution 3D-MRI volumetry at 3T in-vivo].
Fortschr Röntgenstr.
2011;
183
432-440
MissingFormLabel
- 13
Stammberger T, Eckstein F, Michaelis M et al.
Interobserver reproducibility of quantitative cartilage measurements: comparison of
B-spline snakes and manual segmentation.
Magnetic resonance imaging.
1999;
17
1033-1042
MissingFormLabel
- 14
Lysholm J, Gillquist J.
Evaluation of knee ligament surgery results with special emphasis on use of a scoring
scale.
The American journal of sports medicine.
1982;
10
150-154
MissingFormLabel
- 15
Müller W, Biedert R, Hefti F et al.
OAK knee evaluation. A new way to assess knee ligament injuries.
Clinical orthopaedics.
1988;
232
37-50
MissingFormLabel
- 16
Tegner Y, Lysholm J.
Rating systems in the evaluation of knee ligament injuries.
Clinical orthopaedics and related research.
1985;
198
43-49
MissingFormLabel
- 17
Werlich T, Brand H, Echtermeyer V et al.
[The knee arthrometer KT-1000: value of instrumental measurement in diagnosis of complex
anterior knee instability].
Aktuelle Traumatol.
1993;
23
43-49
MissingFormLabel
- 18
McKinley T O, Rudert M J, Koos D C et al.
Incongruity versus instability in the etiology of posttraumatic arthritis.
Clin Orthop Relat Res.
2004;
423
44-51
MissingFormLabel
- 19
Andreisek G, White L M, Sussman M S et al.
Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone
area in patients with ACL-reconstructions 7 years after surgery.
Osteoarthritis Cartilage.
2009;
17
871-878
MissingFormLabel
- 20
Peterfy C G, Dijke C F, Janzen D L et al.
Quantification of articular cartilage in the knee with pulsed saturation transfer
subtraction and fat-suppressed MR imaging: optimization and validation.
Radiology.
1994;
192
485-491
MissingFormLabel
- 21
Eckstein van F, Westhoff J, Sittek H et al.
In vivo reproducibility of three-dimensional cartilage volume and thickness measurements
with MR imaging.
AJR American journal of roentgenology.
1998;
170
593-597
MissingFormLabel
- 22
Stammberger T, Eckstein F, Englmeier K H et al.
Determination of 3D cartilage thickness data from MR imaging: computational method
and reproducibility in the living.
Magnetic resonance in medicine.
1999;
41
529-536
MissingFormLabel
- 23
Eckstein F, Heudorfer L, Faber S C et al.
Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI).
Osteoarthritis and cartilage.
2002;
10
922-928
MissingFormLabel
- 24
Hardya P A, Newmark R, Liu Y M et al.
The influence of the resolution and contrast on measuring the articular cartilage
volume in magnetic resonance images.
Magnetic resonance imaging.
2000;
18
965-972
MissingFormLabel
- 25
Eckstein F, Ateshian G, Burgkart R et al.
Proposal for a nomenclature for magnetic resonance imaging based measures of articular
cartilage in osteoarthritis.
Osteoarthritis Cartilage.
2006;
14
974-983
MissingFormLabel
- 26
Kellgren J H, Lawrence J S.
Radiological assessment of osteo-arthrosis.
Annals of the rheumatic diseases.
1957;
16
494-502
MissingFormLabel
- 27
Altman R D, Hochberg M, Murphy W A et al.
Atlas of individual radiographic features in osteoarthritis.
Osteoarthritis and cartilage.
1995;
3 (Suppl A)
3-70
MissingFormLabel
- 28 Bonakdarpour A. Diagnostic imaging of musculoskeletal diseases: a systematic approach. 1st ed. New York: Springer; 2009
MissingFormLabel
- 29
Spindler K P, Schils J P, Bergfeld J A et al.
Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate
ligament tears by magnetic resonance imaging and arthroscopy.
The American journal of sports medicine.
1993;
21
551-557
MissingFormLabel
- 30
Fowler P J.
Bone injuries associated with anterior cruciate ligament disruption.
Arthroscopy.
1994;
10
453-460
MissingFormLabel
- 31
Faber K J, Dill J R, Amendola A et al.
Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic
resonance imaging follow-up study.
The American journal of sports medicine.
1999;
27
489-494
MissingFormLabel
- 32
Felson D T, McLaughlin S, Goggins J et al.
Bone marrow edema and its relation to progression of knee osteoarthritis.
Annals of internal medicine.
2003;
139
330-336
MissingFormLabel
- 33
Zysk S P, Krüger A, Baur A et al.
Tripled semitendinosus anterior cruciate ligament reconstruction with Endobutton fixation:
a 2 – 3-year follow-up study of 35 patients.
Acta orthopaedica Scandinavica.
2000;
71
381-386
MissingFormLabel
- 34
Drogset J O, Grøntvedt T, Robak O R et al.
A sixteen-year follow-up of three operative techniques for the treatment of acute
ruptures of the anterior cruciate ligament.
The Journal of bone and joint surgery.
2006;
88
944-952
MissingFormLabel
- 35
Fink C, Hoser C, Benedetto K P et al.
Langzeitergebnisse nach konservativer oder operativer Therapie der vorderen Kreuzbandruptur.
Der Unfallchirurg.
1996;
99
964-969
MissingFormLabel
- 36
Laxdal G, Kartus J, Ejerhed L et al.
Outcome and risk factors after anterior cruciate ligament reconstruction: a follow-up
study of 948 patients.
Arthroscopy.
2005;
21
958-964
MissingFormLabel
- 37
Clancy W G, Ray J M, Zoltan D J.
Acute tears of the anterior cruciate ligament. Surgical versus conservative treatment.
The Journal of bone and joint surgery.
1988;
70
1483-1488
MissingFormLabel
- 38
Passler J M, Babinski K, Schippinger G.
Failure of clinical methods in assessing graft integrity after anterior cruciate ligament
reconstruction: an arthroscopic evaluation.
Arthroscopy.
1999;
15
27-34
MissingFormLabel
- 39
Eckstein F, Sittek H, Gavazzeni A et al.
Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination
of articular cartilage thickness?.
Magnetic resonance in medicine.
1996;
35
89-96
MissingFormLabel
- 40
Hyhlik-Dürr A, Faber S, Burgkart R et al.
Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence.
European radiology.
2000;
10
297-303
MissingFormLabel
- 41
Miese F R, Ostendorf B, Wittsack H J et al.
[Cartilage quality in finger joints: delayed Gd(DTPA)(2)-enhanced MRI of the cartilage
(dGEMRIC) at 3T].
Fortschr Röntgenstr.
2010;
182
873-878
MissingFormLabel
- 42
Wiener E, Settles M, Weirich G et al.
The influence of collagen network integrity on the accumulation of gadolinium-based
MR contrast agents in articular cartilage.
Fortschr Röntgenstr.
2011;
183
226-232
MissingFormLabel
- 43
Raya J G, Arnoldi A P, Weber D L et al.
Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology
and scanning electron microscopy.
MAGMA.
2011;
24 (4)
247-258
MissingFormLabel
Andreas Paul Arnoldi
Department of Clinical Radiologie, LMU München
Marchioninistrasse 15
81377 München
Telefon: ++ 49/89/70 95 36 20
Fax: ++ 49/89/70 95 88 32
eMail: andreas.arnoldi@med.uni-muenchen.de