Fortschr Neurol Psychiatr 2012; 80(1): 17-23
DOI: 10.1055/s-0031-1281851
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Anwendung der Aminosäure-PET in der Diagnostik und Therapie von zerebralen Gliomen

Use of Amino Acid PET in the Diagnostic and Treatment Management of Cerebral Gliomas
N. Galldiks
1   Institut für Neurowissenschaften und Medizin, Kognitive Neurologie (INM-3), Forschungszentrum Jülich
2   Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
,
K.-J. Langen
3   Institut für Neurowissenschaften und Medizin, Physik der medizinischen Bildgebung (INM-4), Forschungszentrum Jülich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Dezember 2011 (online)

Zusammenfassung

Die Anwendung von radioaktiv markierten Aminosäuren als Tracer für die Positronen-Emissions-Tomografie (PET) liefert wichtige Informationen über die biologische Aktivität von zerebralen Gliomen. Durch Kombination dieser funktionellen bildgebenden Methode mit der Magnetresonanztomografie (MRT) ist es möglich, die Versorgung von Patienten mit Hirntumoren entscheidend zu verbessern. Dies beruht im Wesentlichen auf einer spezifischeren Darstellung der Ausdehnung des soliden Gliomgewebes, welche bei der Planung einer Biopsie, eines neurochirurgischen Eingriffs und einer Strahlentherapie signifikante Zusatzinformationen bieten kann. Des Weiteren können Tumorrezidive von posttherapeutischen Veränderungen besser differenziert, prognostische Informationen bei niedrig- und hochgradigen Gliomen gewonnen und Therapieeffekte frühzeitig beurteilt werden. Zunehmend werden auch funktionelle Verfahren der MRT wie zum Beispiel die perfusions- und die diffusionsgewichtete MR-Bildgebung und die MR-Protonenspektroskopie eingesetzt, um Informationen über Metabolismus, Perfusion, Vaskularisation von Hirntumoren zu gewinnen. Vergleichende Studien der Aminosäure-PET mit modernen funktionellen MR-Verfahren sind daher sehr wichtig, um die unterschiedliche Leistungsfähigkeit und die synergistischen Effekte dieser diagnostischen Verfahren bei verschiedenen neuroonkologischen Fragestellungen zu untersuchen.

Abstract

Structural as well as functional imaging methods are of special importance in neurooncology. Improvements of radionuclide and magnetic resonance-based imaging modalities over the past decade have enabled clinicians to non-invasively assess the dynamics of disease-specific processes at the molecular level in patients with malignant gliomas. To date, a range of complementary imaging parameters have been established in the diagnostic work-up of patients with brain tumours. Magnetic resonance imaging (MRI) provides morphological information as well as functional information such as vascular permeability, cell density, tumour perfusion, and metabolic information by using magnetic resonance spectroscopy. The use of radiolabelled amino acids for positron emission tomography (PET) allows a better delineation of tumour margins and improves targeting of biopsy and radiotherapy, and planning surgery. In addition, amino acid imaging appears useful in distinguishing tumour recurrence from non-specific post-therapeutic scar tissue, in predicting prognosis in low-grade gliomas, and in monitoring metabolic response during treatment. Taken together, MRI and PET provide complementary information about tumour biology and activity, thereby resulting in an improved understanding of the kinetics of tumour growth and therefore allow new insights into the pathophysiology of malignant brain tumours. However, multimodal imaging studies comparing the value of amino acid PET and functional methods of MRI (e. g., perfusion and diffusion weighted imaging) are needed. From these studies, surrogate MRI and PET imaging techniques need to be derived to gain complementary structural and functional information of brain tumours that can be placed into common clinical practice which will optimise the clinical management of patients with malignant gliomas.

 
  • Literatur

  • 1 Prieto E, Marti-Climent JM, Dominguez-Prado I et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 2011; 52: 865-872
  • 2 Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 2002; 57: 853-856
  • 3 Langen KJ, Hamacher K, Weckesser M et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294
  • 4 Wester HJ, Herz M, Weber W et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212
  • 5 Heiss P, Mayer S, Herz M et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40: 1367-1373
  • 6 Langen KJ, Jarosch M, Muhlensiepen H et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003; 30: 501-508
  • 7 Jager PL, Vaalburg W, Pruim J et al. Radiolabelled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001; 42: 432-445
  • 8 Kim DK, Kanai Y, Choi HW et al. Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochim Biophys Acta 2002; 1565: 112-121
  • 9 Bustany P, Chatel M, Derlon JM et al. Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-L-Methionine. J Neurooncol 1986; 3: 397-404
  • 10 Weber WA, Wester HJ, Grosu AL et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549
  • 11 Grosu AL, Astner ST, Riedel E et al. An Interindividual Comparison of O-(2- [(18)F]Fluoroethyl)-L-Tyrosine (FET)- and L-[Methyl-(11)C]Methionine (MET)-PET in Patients With Brain Gliomas and Metastases. Int J Radiat Oncol Biol Phys 2011; (Epub ahead of print)
  • 12 Salber D, Stoffels G, Pauleit D et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med 2007; 48: 2056-2062
  • 13 Salber D, Stoffels G, Pauleit D et al. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 2006; 33: 1029-1035
  • 14 Salber D, Stoffels G, Oros-Peusquens AM et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 2010; 51: 790-797
  • 15 Chamberlain MC, Murovic JA, Levin VA. Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 1988; 38: 1371-1374
  • 16 Galldiks N, Kracht LW, Dunkl V et al. Imaging of Non- or Very Subtle Contrast-Enhancing Malignant Gliomas with [(11)C]-methionine Positron Emission Tomography. Mol Imaging 2011; (Epub ahead of print)
  • 17 Perry JR, Tien RD, McLendon RE et al. Argument for stereotactic biopsy of suspected low-grade glioma: results from 53 nonenhancing lesions. Neurology 1996; 46 : Abstract 158
  • 18 Wen PY, Macdonald DR, Reardon DA et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28: 1963-1972
  • 19 Braun V, Dempf S, Weller R et al. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir (Wien) 2002; 144: 777-782
  • 20 Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 21 Pirotte BJ, Levivier M, Goldman S et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009; 64: 471-481
  • 22 Piroth MD, Holy R, Pinkawa M et al. Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol 2011; 99: 218-224
  • 23 Grosu AL, Weber WA, Riedel E et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 64-74
  • 24 Grosu AL, Weber WA, Franz M et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519
  • 25 Piroth MD, Pinkawa M, Holy R et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 80: 176-184
  • 26 Pignatti F, van den Bent M, Curran D et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 2002; 20: 2076-2084
  • 27 Floeth FW, Pauleit D, Sabel M et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527
  • 28 Ribom D, Eriksson A, Hartman M et al. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92: 1541-1549
  • 29 Floeth FW, Sabel M, Stoffels G et al. Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J Nucl Med 2008; 49: 730-737
  • 30 Floeth FW, Pauleit D, Wittsack HJ et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327
  • 31 Macdonald DR, Cascino TL, Schold Jr SC et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8: 1277-1280
  • 32 Kracht LW, Friese M, Herholz K et al. Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 2003; 30: 868-873
  • 33 Stockhammer F, Plotkin M, Amthauer H et al. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neurooncol 2008; 88: 205-210
  • 34 Herholz K, Kracht LW, Heiss WD. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 2003; 13: 269-271
  • 35 Galldiks N, Kracht LW, Burghaus L et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 2006; 33: 516-524
  • 36 Galldiks N, Kracht LW, Berthold F et al. [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 2010; 96: 231-239
  • 37 Galldiks N, Ullrich R, Schroeter M et al. Imaging biological activity of a glioblastoma treated with an individual patient-tailored, experimental therapy regimen. J Neurooncol 2009; 93: 425-430
  • 38 Pöpperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 39 Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 2005; 16: 1702-1708
  • 40 Wyss M, Hofer S, Bruehlmeier M et al. Early metabolic responses in femozolomide treated low-grade glioma patients. J Neurooncol 2009; 95: 87-93
  • 41 Galldiks N, Ullrich R, Schroeter M et al. Volumetry of [(11)C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging 2010; 37: 84-92
  • 42 Chen W, Geist C, Czernin J et al. Assess treatment response using FDOPA PET in patients with recurrent malignant gliomas treated with bevacizumab and irinotecan. J Nucl Med Meeting Abstracts 2008; 49: 78-78
  • 43 Hutterer M, Nowosielski M, Putzer D et al. O-(2-18F-Fluoroethyl)-L-Tyrosine PET Predicts Failure of Antiangiogenic Treatment in Patients with Recurrent High-Grade Glioma. J Nucl Med 2011; 52: 856-864
  • 44 Rachinger W, Goetz C, Popperl G et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511
  • 45 Van Laere K, Ceyssens S, Van Calenbergh F et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005; 32: 39-51
  • 46 Terakawa Y, Tsuyuguchi N, Iwai Y et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008; 49: 694-699
  • 47 Tsuyuguchi N, Sunada I, Iwai Y et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible?. J Neurosurg 2003; 98: 1056-1064
  • 48 GLIAA study collaborators. Amino-acid PET Versus MRI Guided Re-irradiation in Patients With Recurrent Glioblastoma Multiforme (GLIAA). 2010 http://www.clinicaltrials.gov/ct2/show/NCT01252459
  • 49 Herzog H, Langen KJ, Weirich C et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 2011; 50: 74-82
  • 50 Heiland S, Wick W, Bendszus M. Perfusion magnetic resonance imaging for parametric response maps in tumors: is it really that easy?. J Clin Oncol 2010; 28
  • 51 Tsien C, Chenevert T, Galban C et al. J Clin Oncol 2010; (Epub ahead of print)
  • 52 IQWiG-Bericht-Nr. 77. Positronenemissionstomographie (PET) und PET/CT zur Rezidivdiagnostik bei Gliomen mit hohem Malignitätsgrad (III und IV) (D06-01D). 2010 http://www.iqwig.de/projekte-ergebnisse.915.html