Subscribe to RSS
DOI: 10.1055/s-0031-1281954
Kontaktlose In-vivo-Bildgebung der Hornhaut und Vorderkammer des menschlichen Auges – ein qualitativer Vergleich zweier Bildgebungsmodalitäten in der Praxis
Contact Free in-vivo Imaging of Cornea and Anterior Chamber of the Human Eye – A Qualitative Comparison of Imaging TechniquesPublication History
06 October 2011
11 November 2011
Publication Date:
13 December 2011 (online)
Zusammenfassung
Für die kontaktlose klinische Diagnostik der Hornhaut und Vorderkammer des menschlichen Auges existieren neben der Spaltlampe zwei bildgebende Verfahren: die Scheimpflugkamera sowie die optische Kohäranztomografie (OCT). Diese zwei Verfahren werden kurz vorgestellt und in Bezug auf Bildqualität und Sichtbarkeit relevanter Strukturen verglichen. Hierzu stellen wir verschiedene Beispiele aus der klinischen Spezialdiagnostik vor, wie z. B. Keratokonus, Zustand nach Hornhauttransplantation oder Tumoren okulärer Gewebe.
Abstract
For the contactless diagnosis of the human cornea and anterior chamber in clinical routine, two systems have been established besides the slit lamp: the Scheimpflug camera and optical coherence tomography (OCT). A short introduction into these imaging methods is provided along with a comparison with respect to imaging quality and the visibility of relevant ocular structures. We present different examples from special clinical diagnostics such as keratoconus, condition after keratoplasty or tumours in ocular tissue.
-
Literatur
- 1 de Sanctis U, Loiacono C, Richiardi L et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 2008; 115: 1534-1539
- 2 Ambrosio RJ, Caiado A, Guerra F et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg 2011; 27: 753-758
- 3 Eppig T, Gillner M, Walter S et al. Berechnung phaker Intraokularlinsen. Klin Monatsbl Augenheilkd 2011; 228: 690-697
- 4 Fercher AF. Optical coherence tomography – development, principles, applications. Z Med Phys 2010; 20: 251-276
- 5 Viestenz A, Vogt S, Langenbucher A et al. Biometrie des vorderen Augensegmentes mittels optischer Kohärenztomographie: Evaluierung verschiedener Geräte und Analyseprogramme. Ophthalmologe 2009; 106: 723-728
- 6 Huang J, Pesudovs K, Yu A et al. A comprehensive comparison of central corneal thickness measurement. Optom Vis Sci 2011; 88: 940-949
- 7 Fu J, Wang X, Li S et al. Comparative study of anterior segment measurement with Pentacam and anterior segment optical coherence tomography. Can J Ophthalmol 2010; 45: 627-631
- 8 Cheng A, Rao S, Lau S et al. Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia. J Refract Surg 2008; 24: 361-365
- 9 Chen S, Huang J, Wen D et al. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol 2010;
- 10 Beutelspacher S, Serbecic N, Scheuerle A. Assessment of central corneal thickness using OCT, ultrasound, optical low coherence reflectometry and Scheimpflug pachymetry. Eur J Ophthalmol 2011; 21: 132-137
- 11 Grewal D, Brar G, Grewal S. Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry. J Cataract Refract Surg 2010; 36: 954-964
- 12 Ishibazawa A, Igarashi S, Hanada K et al. Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Cornea 2011; 30: 615-619
- 13 Prospero Ponce C, Rocha K, Smith S et al. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. J Cataract Refract Surg 2009; 35: 1055-1062
- 14 Rocha K, Randleman J, Stulting R. Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography. J Refract Surg 2011; 27: 759-763
- 15 Heur M, Tang M, Yiu S et al. Investigation of femtosecond laser-enabled keratoplasty wound geometry using optical coherence tomography. Cornea 2011; 30: 889-894
- 16 Tian J, Marziliano P, Baskaran M et al. Automatic Anterior Chamber Angle Assessment for HD-OCT images. IEEE Trans Biomed Eng 2011; 58: 3242-3249
- 17 Usui T, Tomidokoro A, Mishima K et al. Identification of Schlemm's canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 6934-6939
- 18 Guthoff R, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 2009; 37: 100-117
- 19 Ortiz S, Siedlecki D, Grulkowski I et al. Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging. Opt Express 2010; 18: 2782-2796
- 20 Westphal V, Rollins A, Radhakrishnan S et al. Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. Opt Express 2002; 10: 397-404
- 21 Zhao M, Kuo A, Izatt J. 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. Opt Express 2010; 18: 8923-8936
- 22 Ortiz S, Siedlecki D, Remon L et al. Optical coherence tomography for quantitative surface topography. Appl Opt 2009; 48: 6708-6715
- 23 Jing T, Marziliano P, Wong HT. Automatic detection of Schwalbe's line in the anterior chamber angle of the eye using HD-OCT images. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 3013-3016