Anästhesiol Intensivmed Notfallmed Schmerzther 2011; 46(07/08): 496-506
DOI: 10.1055/s-0031-1284472
Fachwissen
A-Topthema: Geburtshilfliche Anästhesie
© Georg Thieme Verlag Stuttgart · New York

Geburtshilfliche Anästhesie – Erstversorgung und Reanimation von Neugeborenen

Resuscitation of Newborn Infants
Kilian Kalmbach
,
Andreas Leonhardt
Further Information

Publication History

Publication Date:
03 August 2011 (online)

Zusammenfassung

Die erfolgreiche Versorgung und Reanimation von Neugeborenen basiert auf Vorbereitung, genauer Evaluation und prompter Unterstützung entsprechend den kürzlich aktualisierten Empfehlungen durch trainierte Personen. Der wesentliche Schritt der normalen postnatalen Adaptation ist die erfolgreiche Entfaltung der Lunge während der ersten Atemzüge, weil erst danach venöses Blut nahezu vollständig zur Lunge gelangt und ein Gasaustausch stattfindet. Liegt eine Störung der Adaptation vor, muss deshalb durch geeignete Maßnahmen zunächst die Ventilation gesichert werden. Primär wird mit Raumluft (bei Termingeborenen) bzw. niedrigen Sauerstoff-Fraktionen (bei Frühgeborenen) beatmet. Im weiteren Verlauf wird so viel Sauerstoff gegeben, daß physiologische Werte der Sauerstoffsättigung resultieren. Kardiale Kompression wird erst nach suffizienter Beatmung und in einem Verhältnis zur Ventilation von 3:1 durchgeführt. Wesentlicher Bestandteil der Erstversorgung von Neugeborenen ist die konsequente Anwendung wärmeerhaltender Maßnahmen, da Neugeborene allein durch Hypothermie vital bedroht sind. Eine therapeutische Hypothermie darf daher erst nach erfolgreicher Reanimation in Absprache mit dem weiterversorgenden Perinatalzentrum erwogen werden.

Abstract

Successful resuscitation of newborn infants depends on adequate preparation, exact evaluation and prompt initiation of support according to the recently updated recommendations by trained personnel. The key step in postnatal adaptation is the initiation of breathing with a subsequent increase in pulmonary blood flow and pulmonary gas exchange. Therefore, in compromised newborn infants, adequate ventilation is the most important step in cardiopulmonary resuscitation. Ventilation should be initiated with room air in term infants and with low concentrations of supplemental oxygen in preterm infants. Subsequently, oxygen supplementation should always be guided by pulse oximetry. Chest compressions are only effective if adequate ventilation has been ensured. The compression ventilation ratio remains 3:1. The prevention of heat loss and maintaining a normal body temperature by adequate measures is an essential part of the care for healthy as well as asphyxiated infants. Therapeutic hypothermia should only be initiated after successfull resuscitation and consultation with the regional neonatal intensive care unit.

Kernaussagen

  • Die wichtigste Voraussetzung für eine normale Adaptation ist das Einsetzen der Atmung. Effektive Beatmung ist die wichtigste Voraussetzung für eine erfolgreiche Reanimation.

  • Bei jeder Geburt muss eine in der Reanimation trainierte Person ausschließlich für die Versorgung des Neugeborenen zur Verfügung stehen. Ein geeigneter Reanimationsplatz und erforderliches Material muss vorbereitet sein.

  • Neugeborene saugt man nur ab, wenn eine Verlegung der Atemwege vorliegt. Bei mekoniumhaltigem Fruchtwasser werden Neugeborene nur dann abgesaugt, wenn sie beeinträchtigt sind.

  • Evaluation und Unterstützung eines beeinträchtigten Neugeborenen müssen prompt erfolgen. Bei Apnoe, Schnappatmung oder angestrengter Atmung müssen bereits in den ersten 60 s nach Geburt die initialen Schritte zur Stabilisierung und 5 Beatmungen erfolgen.

  • Eine ineffektive Beatmung kann man verbessern durch:

    • Lagerung in ”Schnüffelposition“

    • Applikation der Maske ohne Kompression des Mundbodens

    • ausreichende Beatmungsdrücke

    • ausreichende Inspirationszeit

    • Beatmung über nasopharyngealen TubusLarynxmaske

    • Intubation

  • Initiale Beatmung von Termingeborenen mit Raumluft, von Frühgeborenen mit 30 % Sauerstoff. Weitere Sauerstoffzufuhr: so, dass ein physiologischer Anstieg der Sättigung resultiert.

  • Bei effektiver Beatmung steigt prompt die Herzfrequenz.

  • Erst wenn die Lunge ventiliert wird (sichtbare Thoraxexkursion), beginnt man bei einer Herzfrequenz unter 60/min mit Thoraxkompression. Auch bei intubierten Neugeborenen wechselt man im Verhältnis 3 : 1 zwischen Kompression und Beatmung.

  • Adrenalin wird bevorzugt intravenös (Nabelvenenkatheter) oder intraossär mit 10–30 μg/kg gegeben. Endotracheal: mindestens 100 μg/kg.

  • Nach einer Reanimation ist die Indikation zur therapeutischen Hypothermie zu klären.

Ergänzendes Material

 
  • Literaturverzeichnis

  • 1 Rajaratnam JK, Marcus JR, Flaxman AD et al. Neonatal, postneonatal, childhood, and under-5 mortality for 187 countries, 1970-2010: a systematic analysis of progress towards Millennium Development Goal 4. Lancet 2010; 375: 1988-2008
  • 2 Black RE, Cousens S, Johnson HL et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 2010; 375: 1969-1987
  • 3 Palme-Kilander C. Methods of resuscitation in low-Apgar-score newborn infants--a national survey. Acta Paediatr 1992; 81: 739-744
  • 4 Perlman JM, Risser R. Cardiopulmonary resuscitation in the delivery room. Associated clinical events. Arch Pediatr Adolesc Med 1995; 149: 20-25
  • 5 Barber CA, Wyckoff MH. Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 2006; 118: 1028-1034
  • 6 Perlman JM, Wyllie J, Kattwinkel J et al. Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Pediatrics 2010; 126: 1319-1344
  • 7 Kattwinkel J, Perlman JM, Aziz K et al. Neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2010; 126: 1400-1413
  • 8 Richmond S, Wyllie J. Versorgung und Reanimation des Neugeborenen. Notfall Rettungsmed 2010; 13: 665-678
  • 9 Cross KW, Dawes GS, Hyman A, Mott JC. Hyperbaric oxygen and intermittent positive-pressure ventilation in resuscitation of asphyxiated newborn rabbits. Lancet 1964; 2: 560-562
  • 10 Taeusch HW, Ballard RA, Gleason CA eds. Avery's diseases of the newborn. Philadelphia: Elsevier Saunders; 2005
  • 11 Teitel DF, Iwamoto HS, Rudolph AM. Changes in the pulmonary circulation during birth-related events. Pediatr Res 1990; 27: 372-378
  • 12 O'Donnell CP, Kamlin CO, Davis PG, Morley CJ. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr 2010; 156: 846-847
  • 13 Mortola JP, Fisher JT, Smith JB et al. Onset of respiration in infants delivered by cesarean section. J Appl Physiol 1982; 52: 716-724
  • 14 Dawson JA, Kamlin CO, Wong C et al. Changes in heart rate in the first minutes after birth. Arch Dis Child Fetal Neonatal Ed 2010; 95: 177-181
  • 15 Kamlin CO, O'Donnell CP, Everest NJ, Davis PG, Morley CJ. Accuracy of clinical assessment of infant heart rate in the delivery room. Resuscitation 2006; 71: 319-321
  • 16 Owen CJ, Wyllie JP. Determination of heart rate in the baby at birth. Resuscitation 2004; 60: 213-217
  • 17 O'Donnell CP, Kamlin CO, Davis PG, Carlin JB, Morley CJ. Clinical assessment of infant colour at delivery. Arch Dis Child Fetal Neonatal Ed 2007; 92: 465-467
  • 18 Lopriore E, van Burk GF, Walther FJ, de Beaufort AJ. Correct use of the Apgar score for resuscitated and intubated newborn babies: questionnaire study. BMJ 2004; 329: 143-144
  • 19 American Academy of Pediatrics.. The Apgar score. Pediatrics 2006; 117: 1444-1447
  • 20 Kamlin CO, Dawson JA, O'Donnell CP et al. Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room. J Pediatr 2008; 152: 756-760
  • 21 Baquero H, Alviz R, Castillo A, Neira F, Sola A. Avoiding Hyperoxemia During Neonatal Resuscitation: Time To Response Of Different SpO2 Monitors. Acta Paediatrica 2010;
  • 22 O'Donnell CP, Kamlin CO, Davis PG, Morley CJ. Feasibility of and delay in obtaining pulse oximetry during neonatal resuscitation. J Pediatr 2005; 147: 698-699
  • 23 Dawson JA, Kamlin CO, Wong C et al. Oxygen saturation and heart rate during delivery room resuscitation of infants <30 weeks' gestation with air or 100% oxygen. Arch Dis Child Fetal Neonatal Ed 2009; 94: 87-91
  • 24 Mariani G, Dik PB, Ezquer A et al. Pre-ductal and post-ductal O2 saturation in healthy term neonates after birth. J Pediatr 2007; 150: 418-421
  • 25 Dawson JA, Kamlin CO, Vento M et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 2010; 125: 1340-1347
  • 26 Adamson Jr. SK, Gandy GM, James LS. The Influence of Thermal Factors Upon Oxygen Consumption of the Newborn Human Infant. J Pediatr 1965; 66: 495-508
  • 27 Silverman WA, Fertig JW, Berger AP. The influence of the thermal environment upon the survival of newly born premature infants. Pediatrics 1958; 22: 876-886
  • 28 Jolly H, Molyneux P, Newell DJ. A controlled study of the effect of temperature on premature babies. J Pediatr 1962; 60: 889-894
  • 29 Costeloe K, Hennessy E, Gibson AT, Marlow N, Wilkinson AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics 2000; 106: 659-671
  • 30 da Mota Silveira SM, Goncalves de Mello MJ, de Arruda Vidal S, de Frias PG, Cattaneo A. Hypothermia on admission: a risk factor for death in newborns referred to the Pernambuco Institute of Mother and Child Health. J Trop Pediatr 2003; 49: 115-120
  • 31 Meyer MP, Bold GT. Admission temperatures following radiant warmer or incubator transport for preterm infants <28 weeks: a randomised study. Arch Dis Child Fetal Neonatal Ed 2007; 92: 295-297
  • 32 Dahm LS, James LS. Newborn temperature and calculated heat loss in the delivery room. Pediatrics 1972; 49: 504-513
  • 33 Vohra S, Roberts RS, Zhang B, Janes M, Schmidt B. Heat Loss Prevention (HeLP) in the delivery room: A randomized controlled trial of polyethylene occlusive skin wrapping in very preterm infants. J Pediatr 2004; 145: 750-753
  • 34 Cramer K, Wiebe N, Hartling L, Crumley E, Vohra S. Heat loss prevention: a systematic review of occlusive skin wrap for premature neonates. J Perinatol 2005; 25: 763-769
  • 35 Besch NJ, Perlstein PH, Edwards NK, Keenan WJ, Sutherland JM. The transparent baby bag. A shield against heat loss. N Engl J Med 1971; 284: 121-124
  • 36 Kent AL, Williams J. Increasing ambient operating theatre temperature and wrapping in polyethylene improves admission temperature in premature infants. J Paediatr Child Health 2008; 44: 325-331
  • 37 Knobel RB, Wimmer Jr. JE., Holbert D. Heat loss prevention for preterm infants in the delivery room. J Perinatol 2005; 25: 304-308
  • 38 Singh A, Duckett J, Newton T, Watkinson M. Improving neonatal unit admission temperatures in preterm babies: exothermic mattresses, polythene bags or a traditional approach?. J Perinatol 2010; 30: 45-49
  • 39 Almeida PG, Chandley J, Davis J, Harrigan RC. Use of the heated gel mattress and its impact on admission temperature of very low birth-weight infants. Adv Neonatal Care 2009; 9: 34-39
  • 40 Gungor S, Kurt E, Teksoz E et al. Oronasopharyngeal suction versus no suction in normal and term infants delivered by elective cesarean section: a prospective randomized controlled trial. Gynecol Obstet Invest 2006; 61: 9-14
  • 41 Cordero L, Hon EH. Neonatal bradycardia following nasopharyngeal stimulation. J Pediatr 1971; 78: 441-447
  • 42 Carrasco M, Martell M, Estol PC. Oronasopharyngeal suction at birth: effects on arterial oxygen saturation. J Pediatr 1997; 130: 832-834
  • 43 Falciglia HS, Henderschott C, Potter P, Helmchen R. Does DeLee suction at the perineum prevent meconium aspiration syndrome?. Am J Obstet Gynecol 1992; 167: 1243-1249
  • 44 Vain NE, Szyld EG, Prudent LM et al. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet 2004; 364: 597-602
  • 45 Wiswell TE, Gannon CM, Jacob J et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics 2000; 105: 1-7
  • 46 Greenough A, Pulikot A, Dimitriou G. Prevention and management of meconium aspiration syndrome--assessment of evidence based practice. European journal of pediatrics 2005; 164: 329-330
  • 47 Rossi EM, Philipson EH, Williams TG, Kalhan SC. Meconium aspiration syndrome: intrapartum and neonatal attributes. Am J Obstet Gynecol 1989; 161: 1106-1110
  • 48 Usta IM, Mercer BM, Sibai BM. Risk factors for meconium aspiration syndrome. Obstet Gynecol 1995; 86: 230-234
  • 49 Gupta V, Bhatia BD, Mishra OP. Meconium stained amniotic fluid: antenatal, intrapartum and neonatal attributes. Indian Pediatr 1996; 33: 293-297
  • 50 Akazawa Y, Ishida T, Baba A, Hiroma T, Nakamura T. Intratracheal catheter suction removes the same volume of meconium with less impact on desaturation compared with meconium aspirator in meconium aspiration syndrome. Early Hum Dev 2010; 86: 499-502
  • 51 Hull D. Lung expansion and ventilation during resuscitation of asphyxiated newborn infants. J Pediatr 1969; 75: 47-58
  • 52 Upton CJ, Milner ADC. Endotracheal resuscitation of neonates using a rebreathing bag. Arch Dis Child 1991; 66: 39-42
  • 53 Vyas H, Milner AD, Hopkins IE. Intrathoracic pressure and volume changes during the spontaneous onset of respiration in babies born by cesarean section and by vaginal delivery. J Pediatr 1981; 99: 787-791
  • 54 Boon AW, Milner AD, Hopkin IE. Lung expansion, tidal exchange, and formation of the functional residual capacity during resuscitation of asphyxiated neonates. J Pediatr 1979; 95: 1031-1036
  • 55 Hird MF, Greenough A, Gamsu HR. Inflating pressures for effective resuscitation of preterm infants. Early Hum Dev 1991; 26: 69-72
  • 56 Lindner W, Vossbeck S, Hummler H, Pohlandt F. Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation?. Pediatrics 1999; 103: 961-967
  • 57 Hillman NH, Moss TJ, Kallapur SG et al. Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med 2007; 176: 575-581
  • 58 Collins MP, Lorenz JM, Jetton JR, Paneth N. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001; 50: 712-719
  • 59 Kraybill EN, Runyan DK, Bose CL, Khan JH. Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr 1989; 115: 115-120
  • 60 Shankaran S, Langer JC, Kazzi SN, Laptook AR, Walsh M. Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 2006; 118: 1654-1659
  • 61 te Pas AB, Siew M, Wallace MJ et al. Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res 2009; 65: 537-541
  • 62 Probyn ME, Hooper SB, Dargaville PA et al. Positive end expiratory pressure during resuscitation of premature lambs rapidly improves blood gases without adversely affecting arterial pressure. Pediatr Res 2004; 56: 198-204
  • 63 O'Donnell CP, Davis PG, Lau R et al. Neonatal resuscitation 2: an evaluation of manual ventilation devices and face masks. Arch Dis Child Fetal Neonatal Ed 2005; 90: 392-396
  • 64 O'Donnell CP, Davis PG, Lau R et al. Neonatal resuscitation 3: manometer use in a model of face mask ventilation. Arch Dis Child Fetal Neonatal Ed 2005; 90: 397-400
  • 65 Schmolzer GM, Kamlin OC, Dawson JA et al. Respiratory monitoring of neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 2009; 95: 295-303
  • 66 Weiss M, Dullenkopf A, Gerber AC. Microcuff pediatric tracheal tube. A new tracheal tube with a high volume-low pressure cuff for children. Anaesthesist 2004; 53: 73-79
  • 67 O'Donnell CP, Kamlin CO, Davis PG, Morley CJ. Endotracheal intubation attempts during neonatal resuscitation: success rates, duration, and adverse effects. Pediatrics 2006; 117: 16-21
  • 68 Repetto JE, Donohue P-CP, Baker SF, Kelly L, Nogee LM. Use of capnography in the delivery room for assessment of endotracheal tube placement. J Perinatol 2001; 21: 284-287
  • 69 Roberts WA, Maniscalco WM, Cohen AR, Litman RS, Chhibber A. The use of capnography for recognition of esophageal intubation in the neonatal intensive care unit. Pediatr Pulmonol 1995; 19: 262-268
  • 70 Aziz HF, Martin JB, Moore JJ. The pediatric disposable end-tidal carbon dioxide detector role in endotracheal intubation in newborns. J Perinatol 1999; 19: 110-113
  • 71 Hosono S, Inami I, Fujita H et al. A role of end-tidal CO(2) monitoring for assessment of tracheal intubations in very low birth weight infants during neonatal resuscitation at birth. J Perinat Med 2009; 37: 79-84
  • 72 Garey DM, Ward R, Rich W et al. Tidal volume threshold for colorimetric carbon dioxide detectors available for use in neonates. Pediatrics 2008; 121: 1524-1527
  • 73 Bhende MS, LaCovey D. A note of caution about the continuous use of colorimetric end-tidal CO2 detectors in children. Pediatrics 1995; 95: 800-801
  • 74 Lane B, Finer N, Rich W. Duration of intubation attempts during neonatal resuscitation. J Pediatr 2004; 145: 67-70
  • 75 Paterson SJ, Byrne PJ, Molesky MG, Seal RF, Finucane BT. Neonatal resuscitation using the laryngeal mask airway. Anesthesiology 1994; 80
  • 76 Zanardo V, Simbi AK, Savio V, Micaglio M, Trevisanuto D. Neonatal resuscitation by laryngeal mask airway after elective cesarean section. Fetal Diagn Ther 2004; 19: 228-231
  • 77 Trevisanuto D, Micaglio M, Ferrarese P, Zanardo V. The laryngeal mask airway: potential applications in neonates. Arch Dis Child Fetal Neonatal Ed 2004; 89: 485-489
  • 78 Gandini D, Brimacombe JR. Neonatal resuscitation with the laryngeal mask airway in normal and low birth weight infants. Anesth Analg 1999; 89: 642-643
  • 79 Bucx MJ, Grolman W, Kruisinga FH, Lindeboom JA, Van Kempen AA. The prolonged use of the laryngeal mask airway in a neonate with airway obstruction and Treacher Collins syndrome. Paediatr Anaesth 2003; 13: 530-533
  • 80 Markakis DA, Sayson SC, Schreiner MS. Insertion of the laryngeal mask airway in awake infants with the Robin sequence. Anesth Analg 1992; 75: 822-824
  • 81 Grein AJ, Weiner GM. Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation. Cochrane Database Syst Rev CD 003314 2006;
  • 82 Booth C, Premkumar MH, Yannoulis A et al. Sustainable use of continuous positive airway pressure in extremely preterm infants during the first week after delivery. Arch Dis Child Fetal Neonatal Ed 2006; 91: 398-402
  • 83 te Pas AB, Walther FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics 2007; 120: 322-329
  • 84 Kugelman A, Feferkorn I, Riskin A et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr 2007; 150
  • 85 Finer NN, Rich W, Craft A, Henderson C. Comparison of methods of bag and mask ventilation for neonatal resuscitation. Resuscitation 2001; 49: 299-305
  • 86 Bennett S, Finer NN, Rich W, Vaucher Y. A comparison of three neonatal resuscitation devices. Resuscitation 2005; 67: 113-118
  • 87 Hussey SG, Ryan CA, Murphy BP. Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed 2004; 89: 490-493
  • 88 Kattwinkel J, Stewart C, Walsh B, Gurka M, Paget-Brown A. Responding to compliance changes in a lung model during manual ventilation: perhaps volume, rather than pressure, should be displayed. Pediatrics 2009; 123: 465-470
  • 89 Tracy MB, Klimek J, Coughtrey H et al. Mask leak in one-person mask ventilation compared to two-person in newborn infant manikin study. Arch Dis Child Fetal Neonatal Ed 2010;
  • 90 Berkowitz ID, Chantarojanasiri T, Koehler RC et al. Blood flow during cardiopulmonary resuscitation with simultaneous compression and ventilation in infant pigs. Pediatr Res 1989; 26: 558-564
  • 91 Phillips GW, Zideman DA. Relation of infant heart to sternum: its significance in cardiopulmonary resuscitation. Lancet 1986; 1: 1024-1025
  • 92 Braga MS, Dominguez TE, Pollock AN et al. Estimation of optimal CPR chest compression depth in children by using computer tomography. Pediatrics 2009; 124: 69-74
  • 93 Meyer A, Nadkarni V, Pollock A et al. Evaluation of the Neonatal Resuscitation Program's recommended chest compression depth using computerized tomography imaging. Resuscitation 2010; 81: 544-548
  • 94 Thaler MM, Stobie GH. An Improved Technic of External Cardiac Compression in Infants and Young Children. N Engl J Med 1963; 269: 606-610
  • 95 Udassi JP, Udassi S, Theriaque DW et al. Effect of alternative chest compression techniques in infant and child on rescuer performance. Pediatr Crit Care Med 2009; 10: 328-333
  • 96 Houri PK, Frank LR, Menegazzi JJ, Taylor R. A randomized, controlled trial of two-thumb vs two-finger chest compression in a swine infant model of cardiac arrest [see comment]. Prehosp Emerg Care 1997; 1: 65-67
  • 97 Glaeser PW, Hellmich TR, Szewczuga D, Losek JD, Smith DS. Five-year experience in prehospital intraosseous infusions in children and adults. Ann Emerg Med 1993; 22: 1119-1124
  • 98 Ellemunter H, Simma B, Trawoger R, Maurer HC. Intraosseous lines in preterm and full term neonates. Arch Dis Child Fetal Neonatal Ed 1999; 80: 74-75
  • 99 Patterson MD, Boenning DA, Klein BL et al. The use of high-dose epinephrine for patients with out-of-hospital cardiopulmonary arrest refractory to prehospital interventions. Pediatr Emerg Care 2005; 21: 227-237
  • Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med 2004; 350: 1722-1730
  • Vandycke C, Martens P. High dose versus standard dose epinephrine in cardiac arrest - a meta-analysis. Resuscitation 2000; 45: 161-166
  • Berg RA, Otto CW, Kern KB et al. A randomized, blinded trial of high-dose epinephrine versus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest. Crit Care Med 1996; 24: 1695-1700
  • Crespo SG, Schoffstall JM, Fuhs LR, Spivey WH. Comparison of two doses of endotracheal epinephrine in a cardiac arrest model. Ann Emerg Med 1991; 20: 230-234
  • Hornchen U, Schuttler J, Stoeckel H, Eichelkraut W, Hahn N. Endobronchial instillation of epinephrine during cardiopulmonary resuscitation. Crit Care Med 1987; 15: 1037-1039
  • Kleinman ME, Oh W, Stonestreet BS. Comparison of intravenous and endotracheal epinephrine during cardiopulmonary resuscitation in newborn piglets. Crit Care Med 1999; 27: 2748-2754
  • Wyckoff MH, Perlman JM, Laptook AR. Use of volume expansion during delivery room resuscitation in near-term and term infants. Pediatrics 2005; 115: 950-955
  • Wyckoff M, Garcia D, Margraf L, Perlman J, Laptook A. Randomized trial of volume infusion during resuscitation of asphyxiated neonatal piglets. Pediatr Res 2007; 61: 415-420
  • Salhab WA, Wyckoff MH, Laptook AR, Perlman JM. Initial hypoglycemia and neonatal brain injury in term infants with severe fetal acidemia. Pediatrics 2004; 114: 361-366
  • Finer N, Leone T. Oxygen saturation monitoring for the preterm infant: the evidence basis for current practice. Pediatr Res 2009; 65: 375-380
  • Escrig R, Arruza L, Izquierdo I et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics 2008; 121: 875-881
  • Wang CL, Anderson C, Leone TA et al. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics 2008; 121: 1083-1089
  • Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology 2008; 94: 176-182
  • Solas AB, Kutzsche S, Vinje M, Saugstad OD. Cerebral hypoxemia-ischemia and reoxygenation with 21% or 100% oxygen in newborn piglets: effects on extracellular levels of excitatory amino acids and microcirculation. Pediatr Crit Care Med 2001; 2: 340-345
  • Carlo WA, Finer NN, Walsh MC et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010; 362: 1959-1969
  • Dawson JA, Davis PG, O'Donnell CP, Omar FKC, Morley CJ. Free-flow oxygen delivery to newly born infants. Arch Dis Child Fetal Neonatal Ed 2007; 92: 132-134
  • Hoehn T, Hansmann G, Buhrer C et al. Therapeutic hypothermia in neonates. Review of current clinical data, ILCOR recommendations and suggestions for implementation in neonatal intensive care units. Resuscitation 2008; 78: 7-12
  • Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin.. Leitlinie zur Frühgeburt an der Grenze der Lebensfähigkeit des Kindes. Monatsschrift für Kinderheilkunde 2008; 156: 798-802
  • Österreichische Gesellschaft für Kinder- und Jugendheilkunde.. Erstversorgung von Frühgeborenen an der Grenze der Lebensfähigkeit. Monatsschrift für Kinderheilkunde 2005; 153: 711-715
  • Schweizerische Gesellschaft für Neonatologie.. Empfehlungen zur Betreuung von Frühgeborenen an der Grenze der Lebensfähigkeit. In 2002;
  • Field D, Milner AD, Hopkin IE. Efficiency of manual resuscitators at birth. Arch Dis Child 1986; 61: 300-302
  • MacDonald MG, Mullet MD, Seshia MMK eds. Avery's Neonatology. Pathophysiology and Management of the Newborn. 6 ed. Philadelphia: Lippincott Williams & Wilkins; 2005. 6.
  • Schilleman K, Witlox RS, Lopriore E et al. Leak and obstruction with mask ventilation during simulated neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 2010; 95: 398-402
  • Finer NN, Rich W, Wang C, Leone T. Airway obstruction during mask ventilation of very low birth weight infants during neonatal resuscitation. Pediatrics 2009; 123: 865-869