Subscribe to RSS
DOI: 10.1055/s-0031-1286193
© Thieme Medical Publishers
Magnetic Resonance Imaging of Cartilage Repair Techniques
Publication History
Publication Date:
04 October 2011 (online)
ABSTRACT
Magnetic resonance (MR) imaging offers a noninvasive method to assess cartilage repair, allowing objective evaluation of the repair tissue and insight into the natural history of cartilage repair procedures. MR imaging allows assessment of the percent fill, signal morphology of the repair tissue, subchondral bone and three-dimensional geometry of the joint. The information gained from MR imaging therefore plays a valuable role in patient follow-up after cartilage repair. This article discusses the MR imaging techniques available for the assessment of articular cartilage, including quantitative imaging techniques that allow assessment of cartilage biochemistry. The MR imaging appearance and assessment of microfracture, autologous chondrocyte implantation, and osteochondral autograft and allograft transplantation is reviewed.
KEYWORDS
Magnetic resonance imaging - cartilage repair - knee - articular cartilage
REFERENCES
- 1 Mainil-Varlet P, Aigner T, Brittberg M International Cartilage Repair Society et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am. 2003; 85-A (Suppl 2) 45-57
- 2 Brown W E, Potter H G, Marx R G, Wickiewicz T L, Warren R F. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004; (422) 214-223
- 3 Buckwalter J A, Hunziker E, Rosenberg J. Articular cartilage and knee joint function. In: Whit E J, ed. Articular Cartilage: Composition, Structure, Response to Injury and Methods of Facilitation of Repair. New York: Raven Press; 1990: 19-56
- 4 Rosenberg L, Hellmann W, Kleinschmidt A K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J Biol Chem. 1975; 250 (5) 1877-1883
- 5 Buckwalter J A, Mankin H J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998; 47 477-486
- 6 Black B R, Chong R, Potter H G. Cartilage imaging in sports medicine. Sports Med Arthrosc. 2009; 17 (1) 68-80
- 7 Shindle M K, Foo L F, Kelly B T et al.. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am. 2006; 88 (Suppl 4) 27-46
- 8 Eckstein F, Schnier M, Haubner M et al.. Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clin Orthop Relat Res. 1998; (352) 137-148
- 9 Eckstein F, Hudelmaier M, Wirth W et al.. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis. 2006; 65 (4) 433-441
- 10 Glaser C, Tins B J, Trumm C G, Richardson J B, Reiser M F, McCall I W. Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee: feasibility and initial results. Osteoarthritis Cartilage. 2007; 15 (7) 798-807
- 11 Potter H G, Foo L F. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med. 2006; 34 (4) 661-677
- 12 Potter H G, Linklater J M, Allen A A, Hannafin J A, Haas S B. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998; 80 (9) 1276-1284
- 13 Potter H G, Foo L F. Magnetic resonance imaging of joint arthroplasty. Orthop Clin North Am. 2006; 37 (3) 361-373 vi-vii
- 14 Erickson S J, Prost R W, Timins M E. The “magic angle” effect: background physics and clinical relevance. Radiology. 1993; 188 (1) 23-25
- 15 Fullerton G D, Rahal A. Collagen structure: the molecular source of the tendon magic angle effect. J Magn Reson Imaging. 2007; 25 (2) 345-361
- 16 Potter H G, Chong R. Magnetic resonance imaging assessment of chondral lesions and repair. J Bone Joint Surg Am. 2009; 91 (Suppl 1) 126-131
- 17 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am. 2005; 43 (4) 641-653, vii vii.
- 18 de Visser S K, Bowden J C, Wentrup-Byrne E et al.. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthritis Cartilage. 2008; 16 (6) 689-697
- 19 Meder R, de Visser S K, Bowden J C, Bostrom T, Pope J M. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage. 2006; 14 (9) 875-881
- 20 Mosher T J, Dardzinski B J. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004; 8 (4) 355-368
- 21 Mosher T J, Dardzinski B J, Smith M B. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology. 2000; 214 (1) 259-266
- 22 David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004; 22 (5) 673-682
- 23 Alhadlaq H A, Xia Y, Moody J B, Matyas J R. Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann Rheum Dis. 2004; 63 (6) 709-717
- 24 Glaser C, Mendlik T, Dinges J et al.. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med. 2006; 56 (3) 527-534
- 25 Raya J G, Dietrich O, Horng A, Weber J, Reiser M F, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010; 63 (1) 181-193
- 26 Mosher T J, Zhang Z, Reddy R et al.. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011; 258 (3) 832-842
- 27 Lesperance L M, Gray M L, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res. 1992; 10 (1) 1-13
- 28 Shapiro E M, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med. 2002; 47 (2) 284-291
- 29 Wheaton A J, Borthakur A, Shapiro E M et al.. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology. 2004; 231 (3) 900-905
- 30 Borthakur A, Shapiro E M, Akella S V, Gougoutas A, Kneeland J B, Reddy R. Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology. 2002; 224 (2) 598-602
- 31 Bashir A, Gray M L, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996; 36 (5) 665-673
- 32 Wheaton A J, Dodge G R, Borthakur A, Kneeland J B, Schumacher H R, Reddy R. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res. 2005; 23 (1) 102-108
- 33 Li X, Han E T, Ma C B, Link T M, Newitt D C, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005; 54 (4) 929-936
- 34 Duvvuri U, Reddy R, Patel S D, Kaufman J H, Kneeland J B, Leigh J S. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997; 38 (6) 863-867
- 35 Wheaton A J, Casey F L, Gougoutas A J et al.. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging. 2004; 20 (3) 519-525
- 36 Regatte R R, Akella S V, Borthakur A, Kneeland J B, Reddy R. Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho. Acad Radiol. 2002; 9 (12) 1388-1394
- 37 Li X, Benjamin Ma C, Link T M et al.. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007; 15 (7) 789-797
- 38 Regatte R R, Akella S V, Wheaton A J et al.. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004; 11 (7) 741-749
- 39 Buckwalter J A. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998; 28 (4) 192-202
- 40 Curl W W, Krome J, Gordon E S, Rushing J, Smith B P, Poehling G G. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997; 13 (4) 456-460
- 41 Trattnig S, Winalski C S, Marlovits S, Jurvelin J S, Welsch G H, Potter H G. Magnetic resonance imaging of cartilage repair: a review. Cartilage. 2011; 2 (1) 5-26
- 42 Steadman J R, Rodkey W G, Rodrigo J J. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001; (391, Suppl) S362-S369
- 43 Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics. 1997; 20 (6) 525-538
- 44 Alparslan L, Winalski C S, Boutin R D, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol. 2001; 5 (4) 345-363
- 45 Mithoefer K, Williams III R J, Warren R F et al.. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005; 87 (9) 1911-1920
- 46 Frisbie D D, Morisset S, Ho C P, Rodkey W G, Steadman J R, McIlwraith C W. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006; 34 (11) 1824-1831
- 47 Frisbie D D, Oxford J T, Southwood L et al.. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003; (407) 215-227
- 48 Frisbie D D, Trotter G W, Powers B E et al.. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999; 28 (4) 242-255
- 49 Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000; (374) 212-234
- 50 Potter H G, Chong R, Sneag D B. Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc. 2008; 16 (4) 236-245
- 51 Domayer S E, Kutscha-Lissberg F, Welsch G et al.. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthritis Cartilage. 2008; 16 (8) 903-908
- 52 Welsch G H, Mamisch T C, Domayer S E et al.. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology. 2008; 247 (1) 154-161
- 53 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994; 331 (14) 889-895
- 54 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res. 2001; (391, Suppl) S349-S361
- 55 Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006; 57 (1) 24-31
- 56 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006; 57 (1) 16-23
- 57 Breinan H A, Minas T, Hsu H P, Nehrer S, Sledge C B, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am. 1997; 79 (10) 1439-1451
- 58 Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med. 1999; 18 (1) 13-44 v-vi v–vi.
- 59 Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging. 2005; 23 (7) 779-787
- 60 Moriya T, Wada Y, Watanabe A et al.. Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans: histology, biochemistry, and MR imaging. J Orthop Sci. 2007; 12 (3) 265-273
- 61 Alparslan L, Minas T, Winalski C S. Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR. 2001; 22 (4) 341-351
- 62 Henderson I J, Tuy B, Connell D, Oakes B, Hettwer W H. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003; 85 (7) 1060-1066
- 63 Tins B J, McCall I W, Takahashi T et al.. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology. 2005; 234 (2) 501-508
- 64 Trattnig S, Mamisch T C, Welsch G H et al.. Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol. 2007; 42 (6) 442-448
- 65 Gillis A, Bashir A, McKeon B, Scheller A, Gray M L, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol. 2001; 36 (12) 743-748
- 66 Glenn Jr R E, McCarty E C, Potter H G, Juliao S F, Gordon J D, Spindler K P. Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med. 2006; 34 (7) 1084-1093
- 67 Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy. 1993; 9 (3) 318-321
- 68 Bobić V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc. 1996; 3 (4) 262-264
- 69 Nho S J, Foo L F, Green D M et al.. Magnetic resonance imaging and clinical evaluation of patellar resurfacing with press-fit osteochondral autograft plugs. Am J Sports Med. 2008; 36 (6) 1101-1109
- 70 Koh J L, Wirsing K, Lautenschlager E, Zhang L O. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med. 2004; 32 (2) 317-320
- 71 Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998; 21 (7) 751-756
- 72 Pearce S G, Hurtig M B, Clarnette R, Kalra M, Cowan B, Miniaci A. An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy. 2001; 17 (1) 50-55
- 73 Lane J M, Brighton C T, Ottens H R, Lipton M. Joint resurfacing in the rabbit using an autologous osteochondral graft. J Bone Joint Surg Am. 1977; 59 (2) 218-222
- 74 Dew T L, Martin R A. Functional, radiographic, and histologic assessment of healing of autogenous osteochondral grafts and full-thickness cartilage defects in the talus of dogs. Am J Vet Res. 1992; 53 (11) 2141-2152
- 75 Sirlin C B, Brossmann J, Boutin R D et al.. Shell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses. Radiology. 2001; 219 (1) 35-43
- 76 Williams R J, Gamradt S C. Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect. 2008; 57 563-571
- 77 Bedi A, Foo L F, Williams III R J, Potter H G. The Cartilage Study Group . The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2 mapping analysis. Cartilage. 2010; 1 (1) 20-28
- 78 Foo L F, Jawetz S T, Williams R J. MRI and quantitative T2 mapping of cartilage repair using synthetic biphasic acellular scaffold. ISMRM annual meeting (paper presentation, abstract 1030). Berlin, Germany; 2007
- 79 Williams III R J, Ranawat A S, Potter H G, Carter T, Warren R F. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007; 89 (4) 718-726
Hollis PotterM.D.
Department of Magnetic Resonance Imaging, Hospital for Special Surgery
535 East 70th Street, New York, NY 10021
Email: potterh@hss.edu