Abstract
During research planning and the development of ideas, organic
chemists intuitively work on the chemical space, even if they are
often unaware of the nature and the extent of chemical space of
organic reactions, in which they are moving. The exploration and
the rational analysis of new chemical spaces originating from new
tandem and multicomponent aldol additions of active methylene compounds
can lead to the development of new efficient and environmentally
friendly methodologies and to the synthesis of new libraries of
highly functionalised compounds.
1 Introduction
2 Chemical Space of the Aldol Addition of Active Methylene Compounds
3 One-Pot Tandem Aldol Addition-Cyclization Reactions
4 Analysis of Chemical Spaces
Key words
aldol addition - active methylene compounds - tandem aldol
addition-cyclization - multicomponent reactions
References and Notes
1
Kirkpatrick P.
Ellis C.
Nature
2004,
432:
823
2 Organic and inorganic substances registered
by CAS have just exceeded 63 million (www.cas.org).
3
Irwin JJ.
Nat.
Chem. Biol.
2009,
5:
536
4
Shoichet BK.
Nature
2004,
432:
862
5
Burke MD.
Schreiber SL.
Angew. Chem. Int.
Ed.
2004,
43:
46
6 A conceptually related approach has
recently been reported for the multidimensional reaction screening
of ortho -alkynyl benzaldehydes with a
variety of catalysts and reaction partners in order to identify
new chemical reactions: Beeler AB.
Su S.
Singleton CA.
Porco JA.
J. Am.
Chem. Soc.
2007,
129:
1413
7 The failure of a planned aldol addition
of substituted cyclohexane-1,3-dione in the total synthesis of coleophomones
is described here: Nicolaou KC.
Montagnon T.
Vassilikogiannakis G.
Mathison CJN.
J.
Am. Chem. Soc.
2005,
127:
8872
8 For aldol additions of malonates
in the total synthesis of epolactaene, see: Marumoto S.
Kogen H.
Naruto S.
J.
Org. Chem.
1998,
63:
2068
9a For
aldol additions of malonates in the total synthesis of carbohydrates,
see: Saba A.
Adovasio V.
Nardelli M.
Tetrahedron: Asymmetry
1992,
3:
1573
9b For the preparation of
polyfunctional furanic derivatives from trioses, see: Sanchez Ballesteros J.
McPhee DJ.
Hernandez Hernandez F.
Rev. Roum. Chem.
1981,
26:
899
10 For recent studies about catalyst-free
aldol additions of 1,3-dicarbonyl compounds to activated aldehydes,
see: Rohra K.
Mahrwald R.
Adv.
Synth. Catal.
2008,
350:
2877 ;
and references therein
11a For
hydroxymethylation of 3-benzoyl-2-oxo-ethylpropionate, see: Couquelet J.
Boyer JB.
Coquelet J.
Compt. Rend. S. Acad. Sciences, Ser. C: Sciences
Chim.
1972,
274:
422
11b Cornforth JW, and Hawes JE. inventors; German
Patent DE 2336394. For the reaction of
acetoacetic ethyl ester in the presence of triethylamine, see:
11c For the hydroxymethylation
of 2-oxocyclohexane- and 2- oxocyclo-pentanecarboxylic acid esters
in the presence of CaO, see: Gerdes H.
Marschall H.
Weyerstahl P.
Chem.
Ber.
1975,
108:
3448
11d Gyuran JJ. inventors; European Patent EP 350320. For the hydroxymethylation
of 2,4-pentanedione in the presence of KOH, see:
11e For the hydroxy-methylation
of malonates, see: Guzaev A.
Lönnberg H.
Synthesis
1997,
1281
11f For the hydroxymethylation
of α-methyl-substituted acetoacetic ethyl ester, see: Akeboshi T.
Ohtsuka Y.
Sugai T.
Ohta H.
Tetrahedron
1998,
54:
7387
11g For iron-catalyzed hydroxymethylation,
see: Ogawa C.
Kobayashi S.
Chem.
Lett.
2007,
36:
56
11h For aldol addition of
formaldehyde to 1,3-dicarbonyl compounds used in the total syntheses
of natural products, see: Tsuda Y.
Ishiura A.
Takamura S.
Hosoi S.
Isobe K.
Mohri K.
Chem.
Pharm. Bull.
1991,
39:
2797
11i
Chan TH.
Schwerdtfeger AE.
J.
Org. Chem.
1991,
56:
3294
See also some more recent articles:
12a For aldol addition of formaldehyde
to activated ketones: Lecomte V.
Bolm C.
Adv. Synth. Catal.
2005,
347:
1666
12b For enantioselective aldol
addition of formaldehyde in the presence of chiral palladium complexes: Fukuchi I.
Hamashima Y.
Sodeoka M.
Adv. Synth. Catal.
2007,
349:
509
12c For an aldol addition
of aqueous formaldehyde with bicyclic β-keto ester, see: Shirakawa S.
Shimizu S.
Synlett
2007,
3160
Early attempts in the aldol addition
of 1,3-dicarbonyl compounds:
13a
Marvel CS.
Stille JK.
J.
Org. Chem.
1957,
22:
1451
13b
Birkofer L.
Ritter A.
Vernaleken H.
Chem.
Ber.
1966,
99:
2518
13c
Wilson BD.
J. Org. Chem.
1963,
28:
314
13d
Hellmann H.
Dieterich D.
Justus Liebigs Ann. Chem.
1962,
656:
89
13e
Mayer R.
Gebhardt B.
Chem. Ber.
1960,
93:
1212
13f
Schroth W.
Treibs W.
Justus Liebigs Ann. Chem.
1961,
639:
214
13g For metallation of malonic
esters with calcium in liquid ammonia and their reactivity, see: Kirilov M.
Petrov G.
Lazarov A.
Izvestiya po Khimiya
1975,
8:
59
13h
Chen W.
Pinto BM.
Carbohydr. Res.
2007,
342:
2163
13i For the reaction of chloral,
see: Petrov KA.
Tikhonova NA.
Lapshina ZY.
Til"kunova NA.
Baranov NN.
Zh. Org. Khim.
1979,
15:
265
14a
Camps P.
Drudis JM.
Tetrahedron
Lett.
1978,
2597
14b
Antonioletti R.
Bonadies F.
Scettri A.
J.
Org. Chem.
1988,
53:
5540
14c
Umebayashi N.
Hamashima Y.
Hashizume D.
Sodeoka M.
Angew. Chem. Int. Ed.
2008,
47:
4196 ; Angew. Chem. 2008 , 120 , 4264
14d
Buchanan
DJ.
Dixon DJ.
Hernandez-Juan FA.
Org. Lett.
2004,
6:
1357
15a
Massa A.
Scettri A.
Filosa R.
Capozzolo L.
Tetrahedron
Lett.
2009,
50:
7318
15b
Massa A.
Roscigno A.
De Caprariis P.
Filosa R.
Di Mola A.
Adv.
Synth. Catal.
2010,
352:
3348
15c
More V.
Di Mola A.
Perillo M.
De Caprariis P.
Filosa R.
Peduto A.
Massa A.
Synthesis
2011,
3027
15d
More V.
Di Mola A.
Croce G.
Tedesco C.
Petronzi C.
De Caprariis P.
Peduto A.
Filosa R.
Massa A.
Org.
Biomol. Chem.
2011,
9:
8483
16
Betson MS.
Fleming I.
Ouzman JVA.
Org. Biomol. Chem.
2003,
1:
4017 ; and references reported therein
17a
Denmark SE.
Beutner GL.
Angew. Chem. Int. Ed.
2008,
47:
1560
17b
Denmark SE.
Beutner GL.
Winn T.
Eastgate MD.
J.
Am. Chem. Soc.
2005,
127:
3774
17c
Denmark SE.
Wynn T.
J. Am. Chem.
Soc.
2001,
123:
6199
18a
Lee SK.
Tambar UK.
Perl NR.
Leighton JL.
Tetrahedron
2010,
66:
4769
18b
Notte GT.
Leighton
JL.
J.
Am. Chem. Soc.
2008,
130:
6676
19
Experimental procedure
for SiCl
4
-mediated
aldol reaction (Scheme
[5 ]
). In a flame-dried 2-necked round-bottom
flask tert -butyl acetoacetate
(0.30 mmol) was added to a solution of DIPEA (0.40 mmol), SiCl4 (1.9
mmol), Denmark’s catalyst (0.04 mmol) and aldehyde (0.20
mmol) in dry CH2 Cl2 (1.0 mL) under nitrogen
at -20 ˚C. At the end of the reaction
the mixture was quenched with saturated aqueous NaHCO3 (5
mL), extracted with 15 × 3 mL CH2 Cl2 and
dried over anhydrous Na2 SO4 . After removing
the solvent under reduced pressure the crude products 7 were analysed by ¹ H
NMR and subjected to TMS protection.¹5a Chiral
HPLC separation of 3aa was performed with
a Chiralpak AD-H column in hexane-isopropanol
(98:2), 0.6 mL/min.
20
Angelin M.
Rahm M.
Fischer A.
Brinck T.
Ramström O.
J.
Org. Chem.
2010,
75:
5882
Selected examples of isoindolinone
synthesis:
21a For the synthesis of isoindolinone 9 from o -carboxy
benzaldehyde, see: Rodionov VM.
Chukhina EI.
Zh. Obshch. Khim.
1944,
14:
325
21b For the multistep synthesis
of isoindolinone 10 , see: Belliotti TR.
Brink WA.
Kestern SR.
Rubin JR.
Wistrow DJ.
Zoski KT.
Whetzel SZ.
Corbin AE.
Pugsley TA.
Heffner TG.
Wise LD.
Bioorg. Med. Chem. Lett.
1998,
8:
1499
21c
Lamblin M.
Couture A.
Deniau E.
Grandclaudon P.
Tetrahedron: Asymmetry
2008,
19:
111
21d Cyclization in the presence
of metal catalysts: Zhu C.
Falck JR.
Org. Lett.
2011,
13:
1214
21e For an enantioselective
Cu(I)-catalyzed construction of three specific isoindolinones,
see: Guo S.
Xie Y.
Hu X.
Xia C.
Huang H.
Angew. Chem. Int. Ed.
2010,
49:
2728
22
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
23 Aldehydes 1c can
easily be obtained by commercially available dialkylacetal derivatives.
24
Experimental procedure
for the synthesis of 3-substituted isobenzofuranone 11a. To
a solution of aldehyde (0.31 mmol) in DMF (1 mL) and potassium carbonate
(0.62 mmol) di-tert- butyl malonate (0.34
mmol) was added dropwise. The mixture was allowed to stir for 24 h.
Then it was diluted with ethyl acetate and washed three times with
water. The organic layer was dried over Na2 SO4 and
evaporated to give an oil which was purified by chromatography on
silica gel [hexane-ethyl acetate (9:1 to 7:3)];
yield: 93%.
Selected examples of isobenzofuranone
synthesis:
25a
Mal D.
Pahari P.
Ranjan De S.
Tetrahedron
2007,
63:
11781
25b
Choi PJ.
Sperry J.
Brimble MA.
J. Org. Chem.
2010,
75:
7388
25c
Sangshetti JN.
Ansari SAMK.
Shinde DB.
Chin. Chem. Lett.
2011,
22:
163
26 In this context, an interesting
enantioselective two-step synthesis of isobenzofuranones in an organocatalyzed
aldol reaction of simple ketones or aldehydes to 1d ,
followed by a lactonization process is: Zhang H.
Zhang S.
Liu L.
Luo G.
Duan W.
Wang W.
J.
Org. Chem.
2010,
75:
368
For selected examples of pyrrolidinone
syntheses; see:
27a
Xiao Z.-H.
Liu L.-X.
Liu C.
Huang P.-Q.
Synth. Commun.
2011,
41:
2036
27b
Xiang S.-H.
Yuan H.-Q.
Huang P.-Q.
Tetrahedron:
Asymmetry
2009,
20:
2021
27c
Alves Jose CF.
J. Braz. Chem. Soc.
2007,
18:
855
27d
Matsuo J.
Tanaki Y.
Ishibashi H.
Tetrahedron
Lett.
2007,
48:
3233
27e
Lennartz M.
Sadakane M.
Steckham E.
Tetrahedron
1999,
55:
14407