References and Notes
1a
Handbook
of Organopalladium Chemistry for Organic Synthesis
Vols.
1 and 2:
Negishi E.
de Meijere A.
John Wiley;
New York:
2002.
1b
Tsuji J.
Palladium Reagents
and Catalysts
John Wiley;
Chichester:
1995.
1c
Metal-Catalyzed
Cross-Coupling Reactions
2nd ed.:
Diederich F.
Stang P.
Wiley-VCH;
Weinheim:
2004.
2
Hegedus LS.
Transition Metals in the Synthesis of Complex
Organic Molecules
University Science Books;
Sausalito:
1999.
3a
Heck RF.
Dieck HA.
J.
Am. Chem. Soc.
1974,
96:
1133
for selected reviews, see:
3b
Heck RF.
Org. React.
1982,
27:
345
3c
de Meijere A.
Meyer FE.
Angew. Chem., Int.
Ed. Engl.
1994,
33:
2379 ; Angew. Chem. 1994, 106, 2473
3d
Beletskaya IP.
Cheprakov AV.
Chem. Rev.
2000,
100:
3009
3e
Dounay AB.
Overman LE.
Chem.
Rev.
2003,
103:
2945
4a
Stille JK.
Angew. Chem., Int.
Ed. Engl.
1986,
25:
508
4b
Espinet P.
Echavarren AM.
Angew. Chem. Int.
Ed.
2004,
43:
4704
5a
Tietze LF.
Beifuss U.
Angew.
Chem., Int. Ed. Engl.
1993,
32:
131 ; Angew. Chem. 1993, 105, 137
5b
Tietze
LF.
Chem. Rev.
1996,
96:
115
5c
Domino
Reactions in Organic Synthesis
Tietze LF.
Brasche G.
Gericke K.
Wiley-VCH;
Weinheim:
2006.
For recent examples of domino processes involving palladium
catalysis, see:
5d
Braun M.
Richrath B.
Synlett
2009,
968
5e
Rudolph A.
Rackelmann N.
Turcotte-Savard MO.
Lautens M.
J.
Org. Chem.
2009,
74:
289
5f
Tietze LF.
Düfert A.
Lotz F.
Sölter L.
Oum K.
Lenzer T.
Beck T.
Herbst-Irmer R.
J. Am. Chem. Soc.
2009,
131:
17879
5g
Leibeling M.
Koester DC.
Pawliczek M.
Schild SC.
Werz DB.
Nature
Chem. Biol.
2010,
6:
199
6
Agrawal YK.
Bhatt HG.
Raval HG.
Oza PM.
Gogoi PJ.
Mini-Reviews
in Medicinal Chemistry
2007,
7:
453
7
Cvengroš J.
Schütte J.
Schlörer N.
Neudörfl J.-M.
Schmalz H.-G.
Angew. Chem. Int. Ed.
2009,
48:
6148 ; Angew. Chem. 2009, 121, 6264
8a
Denmark SE.
Fu J.
Chem.
Rev.
2003,
103:
2763
8b
Marshall JA.
Chem. Rev.
1996,
96:
31
For a related formation of 3-methylene-1-indanols
through intramolecular Heck reaction, see:
9a
Kündig EP.
Ratni H.
Crousse B.
Bernardinelli G.
J.
Org. Chem.
2001,
66:
1852
9b
Fields WH.
Khan AK.
Sabat M.
Chruma JJ.
Org.
Lett.
2008,
10:
5131
For the palladium-catalyzed conversion of 4a into rac-9 using
allene as a reagent, see:
9c
Gai X.
Grigg R.
Collard S.
Muir JE.
Chem. Commun.
2000,
1765
9d
Anwar U.
Grigg R.
Rasparini M.
Savic V.
Sridvaran V.
Chem.
Commun.
2000,
645
10a While
complexes of type 5 have been characterized,
see, for instance Vicente et al.¹0b, we are
aware that cationic intermediates resulting from dissociation of
X- may be involved
10b
Vicente J.
Abad JA.
Martinez-Viviente E.
Ramirez de Arellano MC.
Organometallics
2000,
19:
752
11a
Marshall JA.
Tang Y.
Synlett
1992,
653
11b
Costa AL.
Piazza MG.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
J. Am. Chem. Soc.
1993,
115:
7001
11c
Keck GE.
Tarbet KH.
Geraci LS.
J. Am. Chem. Soc.
1993,
115:
8467
11d
Bedford RB.
Pilarski LT.
Tetrahedron Lett.
2008,
49:
4216
For reviews, see:
11e
Yanagisawa A. In Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
1999.
Chap.
27.
11f
Denmark SE.
Fu J.
Chem. Rev.
2003,
103:
2763
We assume a cyclic transition state
on the basis of a recent DFT study on the palladium-mediated allylstanylation
of aldehydes, see:
12a
Piechaczyk O.
Cantat T.
Mezailles N.
Le Floch P.
J. Org. Chem.
2007,
72:
4228
However, we cannot exclude an acyclic transition state as
suggested for instance by Keck et al. See:
12b
Keck GE.
Savin KA.
Cressman ENK.
Abbott DE.
J.
Org. Chem.
1994,
59:
7889
13a
Miyashita A.
Yasuda A.
Takaya H.
Toriumi K.
Ito T.
Souchi T.
Noyori R.
J. Am. Chem. Soc.
1980,
102:
7932
13b For a review on modified
Binap ligands, see: Berthod M.
Mignani G.
Woodward G.
Lemaire M.
Chem. Rev.
2005,
105:
1801
14a
Kranich R.
Eis K.
Geis O.
Mühle S.
Bats JW.
Schmalz H.-G.
Chem.
Eur. J.
2000,
6:
2874
14b
Blume F.
Zemolka S.
Fey T.
Kranich R.
Schmalz H.-G.
Adv. Synth.
Catal.
2002,
344:
868
14c
Velder J.
Robert T.
Weidner I.
Neudörfl J.-M.
Lex J.
Schmalz H.-G.
Adv. Synth. Catal.
2008,
350:
1309
15a
Werle S.
Fey T.
Neudörfl J.-M.
Schmalz H.-G.
Org. Lett.
2007,
18:
3555
15b
Robert T.
Velder J.
Schmalz
H.-G.
Angew.
Chem. Int. Ed.
2008,
47:
7718 ; Angew. Chem.
2008, 120, 7832
15c
Robert T.
Abiri Z.
Wassenaar J.
Sandee AJ.
Romanski S.
Neudörfl J.-M.
Schmalz
H.-G.
Reek JNH.
Organometallics
2010,
29:
478
16 For a review of biaryl-type P,P-ligands,
see: Shimizu H.
Nagasaki I.
Saito T.
Tetrahedron
2005,
61:
5405
17
Togni A.
Breutel C.
Schnyder A.
Spindler F.
Landert H.
Tijani A.
J. Am. Chem. Soc.
1994,
116:
4062
18a
Ireland T.
Großheimann G.
Wieser-Jeunesse C.
Knochel P.
Angew.
Chem.
1999,
111:
3397
18b For a review on ferreocene-based
ligands, see: Gomez Array R.
Adrio J.
Carretero JC.
Angew.
Chem. Int. Ed.
2006,
45:
7674 ; Angew. Chem.
2006, 118, 7836
19 All minima of 9 were
optimized with DFT, B3LYP/6-31G(d) using Gaussian 03.²¹
For recent examples of the assignment
of absolute configurations through TDDFT-calculated CD spectra,
see:
20a
Hussain H.
Krohn K.
Flörke U.
Schulz B.
Draeger S.
Pescitelli G.
Antus S.
Kurtán T.
Eur. J. Org. Chem.
2007,
13:
292
20b
Krohn K.
Zia-Ullah HH.
Flörke U.
Schulz B.
Draeger S.
Pescitelli G.
Antus S.
Kurtán T.
Chirality
2007,
19:
464
20c
Di Bari L.
Pescitelli G.
Salvadori P.
Rovini M.
Anzini M.
Cappelli A.
Vomero S.
Tetrahedron: Asymmetry
2006,
17:
3430
21
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian
03, Revision d.02
Gaussian,
Inc.;
Pittsburgh:
2003.
22a
Becke AD.
J. Chem. Phys.
1993,
98:
5648
22b
Becke AD.
J. Chem. Phys.
1993,
98:
1372
22c
Stephens PJ.
Devlin FJ.
Chabalowski CF.
Frisch MJ.
J.
Phys. Chem.
1994,
98:
11623
23 TZVP is a triple-ζ basis
set with polarization functions
24a
Parac M.
Grimme S.
Chem.
Phys.
2003,
292:
11
24b
Grimme S.
Parac M.
ChemPhysChem
2003,
292
24c
Jaffé HH.
Orchin M. In Theory and applications of ultraviolet spectroscopy
Wiley;
New
York:
1962.
p.242
24d
Pescitelli G.
Di Bari L.
Caporusso AM.
Salvadori P.
Chirality
2008,
20:
393
25 Typical procedure: 2-Iodobenzaldehyde
(4a; 116 mg, 0.5 mmol), [Pd2dba3] (10.4 mg,
10 µmol, 2 mol%) and ligand L15 (Taniaphos, 15 µmol,
3 mol%) were dissolved in anhydrous DMF (5 mL)
under an argon atmosphere. Allyl tributylstannane (0.31 mL, 1.0 mmol,
2 equiv) was added and the resulting mixture was stirred at 80 ˚C
for 15 h. After cooling to r.t. sat. aq KF (15 mL) was added and
the mixture was extracted with methyl tert-butyl
ether (3 × 20 mL). The combined organic
layers were washed with brine (20 mL), dried over MgSO4 and
solvents were evaporated. The residue was purified by flash chromatography
(SiO2-KF, 9:1; eluting with cyclohexane-EtOAc,
4:1) to give 9 (38 mg, 52%) as
a white-yellowish solid. The enantiomeric purity was determined
as 96% ee by means of chiral HPLC (Machery-Nagel Nucleocel
Delta S; n-hex-i-PrOH,
99:1; 0.5 mL/min); R
f
= 0.38
(Cyhex-EtOAc, 3:1); mp 71-72 ˚C; [α]D
²0 -9.1
(c 1.03, CDCl3); ¹H NMR:
(300 MHz, CDCl3):
δ = 2.42
(d, ³
J = 7
Hz, 1 H, OH), 2.61 (tdd, 4
J = 2.5
Hz, ³
J = 4 Hz, ²
J = 17 Hz,
1 H, H2A), 3.14 (tdd, 4
J = 2 Hz, ³
J = 7 Hz, ²
J = 17 Hz,
1 H, H2B), 5.07 (t, 4
J = 2 Hz,
1 H, H8A), 5.20 (dt, ³
J = 7 Hz, ³
J = 4 Hz,
1 H, H1), 5.50 (t, 4
J = 2.5
Hz, 1 H, H8B), 7.26-7.34, 7.39-7.45,
7.46-7.53 (3 × m, 4 × 1 H,
H4, H5, H6, H7); ¹³C NMR (75
MHz, CDCl3): δ = 42.4 (t, C2), 73.2
(d, C1), 104.2 (t, C8), 120.5, 125.0, 128.6, 128.7 (4 × d, C4,
C5, C6, C7), 140.1 (s, C3), 146.3, 146.9 (2 × s,
C3a, C7a); IR (ATR): 3305 (br, m), 3233 (br,
m), 3060 (w), 2921 (w), 2733 (w), 1641 (m), 1471 (m), 1423 (m),
1333 (s), 1044 (s), 873 (s), 756 (s), 730 (s) cm-¹;
GC-MS (Optima 1 MS, 10 psi, 50→300 ˚C): t
R = 6.51 min; MS
(EI, 70 eV): m/z (%) = 146
(42)[M]+, 145 (26), 131 (52),
128 (52), 117 (24), 103 (13), 91 (12), 77 (18), 63 (26), 39 (100);
HRMS: m/z calcd for
C10H10O: 146.073; found: 146.073 (±0.002).