Synlett 2011(18): 2663-2666  
DOI: 10.1055/s-0031-1289551
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Transition Metals in Organic Synthesis, Part 96. [¹] First Total Synthesis of Streptoverticillin: Unambiguous Confirmation of the Absolute Configuration

Claudia Thomas, Olga Kataeva, Hans-Joachim Knölker*
Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
Fax: +49(351)46337030; e-Mail: hans-joachim.knoelker@tu-dresden.de;
Further Information

Publication History

Received 18 August 2011
Publication Date:
19 October 2011 (online)

Abstract

Using an iron-mediated construction of the carbazole framework, the first synthesis of streptoverticillin is described and the absolute configuration of the natural product is confirmed. The synthesis exploits a novel oxygen-mediated aromatization of tricarbonyliron-coordinated dihydrocarbazoles. Moreover, non-natural (R)-streptoverticillin is prepared for comparison.

    References and Notes

  • 1 For Part 95, see: Fuchsenberger M. Forke R. Knölker H.-J. Synlett  2011,  2056 
  • For reviews, see:
  • 2a Chakraborty DP. Roy S. In Progress in the Chemistry of Organic Natural Products   Vol. 57:  Herz W. Grisebach H. Kirby GW. Steglich W. Tamm C. Springer-Verlag; Wien: 1991.  p.71 
  • 2b Chakraborty DP. In The Alkaloids   Vol. 44:  Cordell GA. Academic Press; New York: 1993.  p.257 
  • 2c Knölker H.-J. Reddy KR. Chem. Rev.  2002,  102:  4303 
  • 2d Knölker H.-J. Top. Curr. Chem.  2005,  244:  115 
  • 2e Knölker H.-J. Reddy KR. In The Alkaloids   Vol. 65:  Cordell GA. Academic Press; Amsterdam: 2008.  p.1 
  • 2f Gruner KK. Knölker H.-J. In Heterocycles in Natural Product Synthesis   Majumdar KC. Chattopadhyay SK. Wiley-VCH; Weinheim: 2011.  p.341 
  • 3a Knölker H.-J. Curr. Org. Synth.  2004,  1:  309 
  • 3b Knölker H.-J. Chem. Lett.  2009,  38:  8 
  • For alternative recent applications, see:
  • 4a Kuwahara A. Nakano K. Nozaki K. J. Org. Chem.  2005,  70:  413 
  • 4b Campeau L.-C. Parisien M. Jean A. Fagnou K. J. Am. Chem. Soc.  2006,  128:  581 
  • 4c Bedford RB. Betham M. J. Org. Chem.  2006,  71:  9403 
  • 4d Scott TL. Yu X. Gorugantula SP. Carrero-Martínez G. Söderberg BCG. Tetrahedron  2006,  62:  10835 
  • 4e Liu Z. Larock RC. Tetrahedron  2007,  63:  347 
  • 4f Ackermann L. Althammer A. Angew. Chem. Int. Ed.  2007,  46:  1627 
  • 4g Bernal P. Benavides A. Bautista R. Tamariz J. Synthesis  2007,  1943 
  • 4h St. Jean DJ. Poon SF. Schwarzenbach JL. Org. Lett.  2007,  9:  4893 
  • 4i Ueno A. Kitawaki T. Chida N. Org. Lett.  2008,  10:  1999 
  • 4j Tsang WCP. Munday RH. Brasche G. Zheng N. Buchwald SL. J. Org. Chem.  2008,  73:  7603 
  • 4k Sridharan V. Martín MA. Menéndez JC. Eur. J. Org. Chem.  2009,  4614 
  • 4l Youn SW. Bihn JH. Kim BS. Org. Lett.  2011,  13:  3738 
  • For reviews, see:
  • 5a Knölker H.-J. Synlett  2002,  371 
  • 5b Knölker H.-J. Chem. Soc. Rev.  1999,  28:  151 
  • 5c Knölker H.-J. Braier A. Bröcher DJ. Cämmerer S. Fröhner W. Gonser P. Hermann H. Herzberg D. Reddy KR. Rohde G. Pure Appl. Chem.  2001,  73:  1075 
  • For selected applications, see:
  • 6a Knölker H.-J. Bauermeister M. Bläser D. Boese R. Pannek J.-B. Angew. Chem., Int. Ed. Engl.  1989,  28:  223 ; Angew. Chem. 1989, 101, 225
  • 6b Knölker H.-J. Bauermeister M.
    J. Chem. Soc., Chem. Commun.  1989,  1468 
  • 6c Knölker H.-J. Bauermeister M. J. Chem. Soc., Chem. Commun.  1990,  664 
  • 6d Knölker H.-J. Bauermeister M. Heterocycles  1991,  32:  2443 
  • 6e Knölker H.-J. Bauermeister M. Pannek J.-B. Chem. Ber.  1992,  125:  2783 
  • 6f Knölker H.-J. Bauermeister M. Pannek J.-B. Bläser D. Boese R. Tetrahedron  1993,  49:  841 
  • 6g Knölker H.-J. Bauermeister M. Tetrahedron  1993,  49:  11221 
  • 6h Knölker H.-J. Bauermeister M. Pannek J.-B. Wolpert M. Synthesis  1995,  397 
  • 6i Knölker H.-J. Hopfmann T. Tetrahedron Lett.  1995,  36:  5339 
  • 6j Knölker H.-J. Fröhner W. Tetrahedron Lett.  1997,  38:  1535 
  • 6k Knölker H.-J. Baum E. Hopfmann T. Tetrahedron  1999,  55:  10391 
  • 6l Knölker H.-J. Fröhner W. Tetrahedron Lett.  1999,  40:  6915 
  • 6m Knölker H.-J. Wolpert M. Tetrahedron  2003,  59:  5317 
  • 6n Knölker H.-J. Fröhner W. Reddy KR. Eur. J. Org. Chem.  2003,  740 
  • 6o Knott KE. Auschill S. Jäger A. Knölker H.-J. Chem. Commun.  2009,  1467 
  • 7 Feng N. Ye W. Wu P. Huang Y. Xie H. Wei X. J. Antibiot.  2007,  60:  179 
  • 8a For isolation, see: Kato S. Shindo K. Kataoka Y. Yamagishi Y. Mochizuki J. J. Antibiot.  1991,  44:  903 
  • 8b For racemic synthesis, see: Knölker H.-J. Fröhner W. Wagner A. Tetrahedron Lett.  1998,  39:  2947 
  • 8c For enantioselective synthesis, see: Czerwonka R. Reddy KR. Baum E. Knölker H.-J. Chem. Commun.  2006,  711 
  • 9a For isolation, see: Shin-ya K. Tanaka M. Furihata K. Hayakawa Y. Seto H. Tetrahedron Lett.  1993,  34:  4943 
  • For racemic synthesis, see:
  • 9b Knölker H.-J. Fröhner W. Synlett  1997,  1108 
  • 9c Fröhner W. Reddy KR. Knölker H.-J. Heterocycles  2007,  74:  895 
  • 9d For enantioselective synthesis, see: Knölker H.-J. Baum E. Reddy KR. Tetrahedron Lett.  2000,  41:  1171 
  • 10a For isolation, see: Sin-ya K. Shimizu S. Kunigami T. Furihata K. Seto H. J. Antibiot.  1995,  48:  574 
  • 10b For racemic synthesis, see: Knölker H.-J. Fröhner W. Tetrahedron Lett.  1998,  39:  2537 
  • 10c For enantioselective synthesis, see: Knölker H.-J. Baum E. Reddy KR. Chirality  2000,  12:  526 
  • 11a Knölker H.-J. Gonser P. Synlett  1992,  517 
  • 11b Knölker H.-J. Gonser P. Jones PG. Synlett  1994,  405 
  • 11c Knölker H.-J. Baum G. Foitzik N. Goesmann H. Gonser P. Jones PG. Röttele H. Eur. J. Inorg. Chem.  1998,  993 
  • 11d Knölker H.-J. Baum E. Gonser P. Rohde G. Röttele H. Organometallics  1998,  17:  3916 
  • 11e Knölker H.-J. Chem. Rev.  2000,  100:  2941 
  • 12 Fischer EO. Fischer RD. Angew. Chem.  1960,  72:  919 
  • 13a Cornélis A. Laszlo P. Synthesis  1985,  909 
  • 13b Laszlo P. Pennetreau P. J. Org. Chem.  1987,  52:  2407 
  • 13c Gigante B. Prazeres AO. Marcelo-Curto MJ. Cornélis A. Laszlo P. J. Org. Chem.  1995,  60:  3445 
  • 15 Flack HD. Acta Crystallogr., Sect. A: Found. Crystallogr.  1983,  39:  876 
14

Spectroscopic data for synthetic streptoverticillin (1): Light-yellow solid; mp 156-157 ˚C; [α]D ²0 +24.0 (c = 0.1, MeOH) (Lit.6 [α]D ²0 +18.4, c = 0.179, MeOH); UV (MeOH): λ = 220, 242, 251, 262, 283, 293, 328, 340 nm; IR (ATR): 3475, 3293, 3055, 2955, 2926, 2850, 2823, 1608, 1500, 1451, 1398, 1348, 1318, 1304, 1271, 1225, 1194, 1166, 1148, 1086, 1060, 1001, 965, 934, 888, 872, 839, 787, 743, 702, 642 cm; ¹H NMR (500 MHz, methanol-d 4): δ = 1.27 (d, J = 6.2 Hz, 3 H), 2.45 (s, 3 H), 3.04 (dd, J = 14.1, 6.6 Hz, 1 H), 3.13 (dd, J = 14.1, 6.9 Hz, 1 H), 3.90 (s, 3 H), 4.10 (s, 3 H), 4.15 (sext, J = 6.4 Hz, 1 H), 7.14 (t, J = 7.8 Hz, 1 H), 7.35 (t, J = 8.1 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 8.16 (d, J = 7.8 Hz, 1 H), 10.30 (br s, 1 H); ¹³C NMR and DEPT (75 MHz, methanol-d 4): δ = 13.32 (CH3), 23.42 (CH3), 39.19 (CH2), 61.07 (CH3), 61.57 (CH3), 69.17 (CH), 111.79 (CH), 115.90 (C), 117.36 (C), 119.93 (CH), 123.39 (CH), 123.76 (C), 126.16 (CH), 130.30 (C), 139.14 (C), 141.84 (C), 145.50 (C), 147.80 (C); MS (EI): m/z (%) = 299 (71) [M+], 284 (25), 254 (100), 240 (7), 224 (8), 210 (10); HRMS: m/z calcd for C18H21NO3: 299.1521; found: 299.1518.

16

Crystal data for 6-bromostreptoverticillin (16): C18H20BrNO3; crystal size: 0.49 × 0.11 × 0.11 mm³; M = 378.26 g mol; monoclinic; space group: P21; λ = 0.71073 Å; a = 12.8825 (10), b = 4.8516 (4), c = 13.7636 (11) Å, β = 108.909 (4)˚; V = 813.81 (11) ų; Z = 2; ρ c = 1.544 g cm; µ = 2.540 mm; T = 198 (2) K; θ range = 1.56-30.00˚; reflections collected: 16453, independent: 4653 (R int = 0.0532). The structure was solved by direct methods and refined by full-matrix least squares on F ²; R 1 = 0.0290, wR 2 = 0.0586 [I > 2σ(I)]; maximal residual electron density: 0.395 e Å; absolute structure (Flack parameter): χ = -0.006 (6). CCDC-835819.