Subscribe to RSS
DOI: 10.1055/s-0031-1289551
Transition Metals in Organic Synthesis, Part 96. [¹] First Total Synthesis of Streptoverticillin: Unambiguous Confirmation of the Absolute Configuration
Publication History
Publication Date:
19 October 2011 (online)
Abstract
Using an iron-mediated construction of the carbazole framework, the first synthesis of streptoverticillin is described and the absolute configuration of the natural product is confirmed. The synthesis exploits a novel oxygen-mediated aromatization of tricarbonyliron-coordinated dihydrocarbazoles. Moreover, non-natural (R)-streptoverticillin is prepared for comparison.
Key words
alkaloids - carbonyl complexes - cyclization - iron - total synthesis
- Supporting Information for this article is available online:
- Supporting Information
- 1 For Part 95, see:
Fuchsenberger M.Forke R.Knölker H.-J. Synlett 2011, 2056 - For reviews, see:
-
2a
Chakraborty DP.Roy S. In Progress in the Chemistry of Organic Natural Products Vol. 57:Herz W.Grisebach H.Kirby GW.Steglich W.Tamm C. Springer-Verlag; Wien: 1991. p.71 -
2b
Chakraborty DP. In The Alkaloids Vol. 44:Cordell GA. Academic Press; New York: 1993. p.257 -
2c
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303 -
2d
Knölker H.-J. Top. Curr. Chem. 2005, 244: 115 -
2e
Knölker H.-J.Reddy KR. In The Alkaloids Vol. 65:Cordell GA. Academic Press; Amsterdam: 2008. p.1 -
2f
Gruner KK.Knölker H.-J. In Heterocycles in Natural Product SynthesisMajumdar KC.Chattopadhyay SK. Wiley-VCH; Weinheim: 2011. p.341 -
3a
Knölker H.-J. Curr. Org. Synth. 2004, 1: 309 -
3b
Knölker H.-J. Chem. Lett. 2009, 38: 8 - For alternative recent applications, see:
-
4a
Kuwahara A.Nakano K.Nozaki K. J. Org. Chem. 2005, 70: 413 -
4b
Campeau L.-C.Parisien M.Jean A.Fagnou K. J. Am. Chem. Soc. 2006, 128: 581 -
4c
Bedford RB.Betham M. J. Org. Chem. 2006, 71: 9403 -
4d
Scott TL.Yu X.Gorugantula SP.Carrero-Martínez G.Söderberg BCG. Tetrahedron 2006, 62: 10835 -
4e
Liu Z.Larock RC. Tetrahedron 2007, 63: 347 -
4f
Ackermann L.Althammer A. Angew. Chem. Int. Ed. 2007, 46: 1627 -
4g
Bernal P.Benavides A.Bautista R.Tamariz J. Synthesis 2007, 1943 -
4h
St. Jean DJ.Poon SF.Schwarzenbach JL. Org. Lett. 2007, 9: 4893 -
4i
Ueno A.Kitawaki T.Chida N. Org. Lett. 2008, 10: 1999 -
4j
Tsang WCP.Munday RH.Brasche G.Zheng N.Buchwald SL. J. Org. Chem. 2008, 73: 7603 -
4k
Sridharan V.Martín MA.Menéndez JC. Eur. J. Org. Chem. 2009, 4614 -
4l
Youn SW.Bihn JH.Kim BS. Org. Lett. 2011, 13: 3738 - For reviews, see:
-
5a
Knölker H.-J. Synlett 2002, 371 -
5b
Knölker H.-J. Chem. Soc. Rev. 1999, 28: 151 -
5c
Knölker H.-J.Braier A.Bröcher DJ.Cämmerer S.Fröhner W.Gonser P.Hermann H.Herzberg D.Reddy KR.Rohde G. Pure Appl. Chem. 2001, 73: 1075 - For selected applications, see:
-
6a
Knölker H.-J.Bauermeister M.Bläser D.Boese R.Pannek J.-B. Angew. Chem., Int. Ed. Engl. 1989, 28: 223 ; Angew. Chem. 1989, 101, 225 -
6b
Knölker H.-J.Bauermeister M.
J. Chem. Soc., Chem. Commun. 1989, 1468 -
6c
Knölker H.-J.Bauermeister M. J. Chem. Soc., Chem. Commun. 1990, 664 -
6d
Knölker H.-J.Bauermeister M. Heterocycles 1991, 32: 2443 -
6e
Knölker H.-J.Bauermeister M.Pannek J.-B. Chem. Ber. 1992, 125: 2783 -
6f
Knölker H.-J.Bauermeister M.Pannek J.-B.Bläser D.Boese R. Tetrahedron 1993, 49: 841 -
6g
Knölker H.-J.Bauermeister M. Tetrahedron 1993, 49: 11221 -
6h
Knölker H.-J.Bauermeister M.Pannek J.-B.Wolpert M. Synthesis 1995, 397 -
6i
Knölker H.-J.Hopfmann T. Tetrahedron Lett. 1995, 36: 5339 -
6j
Knölker H.-J.Fröhner W. Tetrahedron Lett. 1997, 38: 1535 -
6k
Knölker H.-J.Baum E.Hopfmann T. Tetrahedron 1999, 55: 10391 -
6l
Knölker H.-J.Fröhner W. Tetrahedron Lett. 1999, 40: 6915 -
6m
Knölker H.-J.Wolpert M. Tetrahedron 2003, 59: 5317 -
6n
Knölker H.-J.Fröhner W.Reddy KR. Eur. J. Org. Chem. 2003, 740 -
6o
Knott KE.Auschill S.Jäger A.Knölker H.-J. Chem. Commun. 2009, 1467 - 7
Feng N.Ye W.Wu P.Huang Y.Xie H.Wei X. J. Antibiot. 2007, 60: 179 -
8a For
isolation, see:
Kato S.Shindo K.Kataoka Y.Yamagishi Y.Mochizuki J. J. Antibiot. 1991, 44: 903 -
8b For racemic synthesis,
see:
Knölker H.-J.Fröhner W.Wagner A. Tetrahedron Lett. 1998, 39: 2947 -
8c For enantioselective synthesis,
see:
Czerwonka R.Reddy KR.Baum E.Knölker H.-J. Chem. Commun. 2006, 711 -
9a For
isolation, see:
Shin-ya K.Tanaka M.Furihata K.Hayakawa Y.Seto H. Tetrahedron Lett. 1993, 34: 4943 - For racemic synthesis, see:
-
9b
Knölker H.-J.Fröhner W. Synlett 1997, 1108 -
9c
Fröhner W.Reddy KR.Knölker H.-J. Heterocycles 2007, 74: 895 -
9d For enantioselective synthesis,
see:
Knölker H.-J.Baum E.Reddy KR. Tetrahedron Lett. 2000, 41: 1171 -
10a For
isolation, see:
Sin-ya K.Shimizu S.Kunigami T.Furihata K.Seto H. J. Antibiot. 1995, 48: 574 -
10b For racemic synthesis,
see:
Knölker H.-J.Fröhner W. Tetrahedron Lett. 1998, 39: 2537 -
10c For enantioselective synthesis,
see:
Knölker H.-J.Baum E.Reddy KR. Chirality 2000, 12: 526 -
11a
Knölker H.-J.Gonser P. Synlett 1992, 517 -
11b
Knölker H.-J.Gonser P.Jones PG. Synlett 1994, 405 -
11c
Knölker H.-J.Baum G.Foitzik N.Goesmann H.Gonser P.Jones PG.Röttele H. Eur. J. Inorg. Chem. 1998, 993 -
11d
Knölker H.-J.Baum E.Gonser P.Rohde G.Röttele H. Organometallics 1998, 17: 3916 -
11e
Knölker H.-J. Chem. Rev. 2000, 100: 2941 - 12
Fischer EO.Fischer RD. Angew. Chem. 1960, 72: 919 -
13a
Cornélis A.Laszlo P. Synthesis 1985, 909 -
13b
Laszlo P.Pennetreau P. J. Org. Chem. 1987, 52: 2407 -
13c
Gigante B.Prazeres AO.Marcelo-Curto MJ.Cornélis A.Laszlo P. J. Org. Chem. 1995, 60: 3445 - 15
Flack HD. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, 39: 876
References and Notes
Spectroscopic data for synthetic streptoverticillin (1): Light-yellow solid; mp 156-157 ˚C; [α]D ²0 +24.0 (c = 0.1, MeOH) (Lit.6 [α]D ²0 +18.4, c = 0.179, MeOH); UV (MeOH): λ = 220, 242, 251, 262, 283, 293, 328, 340 nm; IR (ATR): 3475, 3293, 3055, 2955, 2926, 2850, 2823, 1608, 1500, 1451, 1398, 1348, 1318, 1304, 1271, 1225, 1194, 1166, 1148, 1086, 1060, 1001, 965, 934, 888, 872, 839, 787, 743, 702, 642 cm-¹; ¹H NMR (500 MHz, methanol-d 4): δ = 1.27 (d, J = 6.2 Hz, 3 H), 2.45 (s, 3 H), 3.04 (dd, J = 14.1, 6.6 Hz, 1 H), 3.13 (dd, J = 14.1, 6.9 Hz, 1 H), 3.90 (s, 3 H), 4.10 (s, 3 H), 4.15 (sext, J = 6.4 Hz, 1 H), 7.14 (t, J = 7.8 Hz, 1 H), 7.35 (t, J = 8.1 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 8.16 (d, J = 7.8 Hz, 1 H), 10.30 (br s, 1 H); ¹³C NMR and DEPT (75 MHz, methanol-d 4): δ = 13.32 (CH3), 23.42 (CH3), 39.19 (CH2), 61.07 (CH3), 61.57 (CH3), 69.17 (CH), 111.79 (CH), 115.90 (C), 117.36 (C), 119.93 (CH), 123.39 (CH), 123.76 (C), 126.16 (CH), 130.30 (C), 139.14 (C), 141.84 (C), 145.50 (C), 147.80 (C); MS (EI): m/z (%) = 299 (71) [M+], 284 (25), 254 (100), 240 (7), 224 (8), 210 (10); HRMS: m/z calcd for C18H21NO3: 299.1521; found: 299.1518.
16Crystal data for 6-bromostreptoverticillin (16): C18H20BrNO3; crystal size: 0.49 × 0.11 × 0.11 mm³; M = 378.26 g mol-¹; monoclinic; space group: P21; λ = 0.71073 Å; a = 12.8825 (10), b = 4.8516 (4), c = 13.7636 (11) Å, β = 108.909 (4)˚; V = 813.81 (11) ų; Z = 2; ρ c = 1.544 g cm-³; µ = 2.540 mm-¹; T = 198 (2) K; θ range = 1.56-30.00˚; reflections collected: 16453, independent: 4653 (R int = 0.0532). The structure was solved by direct methods and refined by full-matrix least squares on F ²; R 1 = 0.0290, wR 2 = 0.0586 [I > 2σ(I)]; maximal residual electron density: 0.395 e Å-³; absolute structure (Flack parameter): χ = -0.006 (6). CCDC-835819.