Subscribe to RSS
DOI: 10.1055/s-0031-1289612
Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine in the Presence of Chlorotrimethylsilane
Publication History
Publication Date:
18 November 2011 (online)
Abstract
Electroreduction of triphenylphosphine oxide to triphenylphosphine in an acetonitrile solution of tetrabutylammonium bromide in the presence of chlorotrimethylsilane was performed successfully in an undivided cell fitted with a zinc anode and a platinum cathode under constant current. A plausible mechanism involving, (1) one-electron reduction of triphenylphosphine oxide generating the corresponding anion radical [Ph3P˙ -O-], (2) subsequent reaction with chlorotrimethylsilane affording the (trimethylsiloxy)triphenylphosphorus radical [Ph3P˙ -OSiMe3], and (3) further one-electron reduction followed by P-O bond fission leading to triphenylphosphine is proposed. In a similar manner, electroreduction of some triarylphosphine oxides and alkyldiarylphosphine oxides was executed to give the corresponding phosphine derivatives in good to moderate yields.
Key words
reduction - electron transfer - phosphorus - silicon
-
1a
Maercker A. In Organic Reactions Vol. 14: John Wiley & Sons; New York: 1965. Chap. 3. -
1b
Boutagy J.Thomas R. Chem. Rev. 1974, 74: 87 -
2a
Hughes DL. In Organic Reactions Vol. 42: John Wiley & Sons; New York: 1992. Chap. 2. -
2b
Mitsunobu O.Yamada M. Bull. Chem. Soc. Jpn. 1967, 40: 2380 -
2c
Mukaiyama T.Matsueda R.Maruyama H. Bull. Chem. Soc. Jpn. 1970, 43: 1271 -
3a
Mukaiyama T.Araki M.Takei H. J. Am. Chem. Soc. 1973, 95: 4763 -
3b
Corey EJ.Nicolaou KC. J. Am. Chem. Soc. 1974, 96: 5614 -
3c
Corey EJ.Nicolaou KC.Melvin LS. J. Am. Chem. Soc. 1975, 97: 653 -
3d Modification:
Gerlach H.Thalmann A. Helv. Chim. Acta 1974, 57: 2661 -
4a
Appel R. Angew. Chem., Int. Ed. Engl. 1975, 14: 801 -
4b
Calzada JG.Hooz J. Org. Synth. 1974, 54: 63 -
5a
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 2: 635 -
5b
Gololobov YG.Zhmurova IN.Kasukhin LF. Tetrahedron 1981, 37: 437 -
5c
Scriven EFV.Turnbull K. Chem. Rev. 1988, 88: 297 -
5d
Gololobov YG.Kasukhin LF. Tetrahedron 1992, 48: 1353 -
5e
Shah S.Protasiewicz JD. Coord. Chem. Rev. 2000, 210: 181 - 6 Phosphorus is obtained economically
from limited regions of the world:
Kuroda A.Takiguchi N.Kato J.Ohtake H. J. Environ. Biotech. 2005, 4: 87 - 7 As an another approach, catalytic
Wittig reaction using 3-methyl-1-phenylphospholane 1-oxide
was reported:
O’Brien CJ.Tellez JL.Nixon ZS.Kang LJ.Carter AL.Kunkel SR.Przeworski KC.Chass GA. Angew. Chem. Int. Ed. 2009, 48: 6836 -
8a
Fritzsche H. Chem. Ber. 1965, 98: 171 -
8b
Coumbe T.Lawrence NJ.Muhammad F. Tetrahedron Lett. 1994, 35: 625 -
8c
Marsi FM. J. Org. Chem. 1974, 39: 265 -
9a
Horner L.Hoffmann H.Beck P. Chem. Ber. 1958, 91: 1583 -
9b
Imamoto T.Tanaka T.Kusumoto T. Chem. Lett. 1985, 14: 1491 -
9c
Griffin S.Heath L.Wyatt P. Tetrahedron Lett. 1998, 39: 4405 -
9d
Nelson GE. inventors; US 4,507,502. ; Chem. Abstr. 1985, 103, 37617 -
9e
Busacca CA.Raju R.Grinberg N.Haddad N.James-Jones P.Lee H.Lorenz JC.Saha A.Senanayake CH. J. Org. Chem. 2008, 73: 1524 -
9f
Malpass DB, andYeargin GS. inventors; US 4,113,783. ; Chem. Abstr. 1979, 90, 23256 - 10
Handa Y.Inanaga J.Yamaguchi M. J. Chem. Soc., Chem. Commun. 1989, 298 - 11
Mathey F.Maillet R. Tetrahedron Lett. 1980, 21: 2525 - 12
Dockner T. Angew. Chem. 1988, 100: 699 - 13
Timokhin BV.Kazantseva MV.Blazhev DG.Rokhin AV. Russ. J. Gen. Chem. 2000, 70: 1310 ; Chem. Abstr. 2001, 134, 311265 -
14a
Iorga B.Camichael D.Savignac P. C. R. Acad. Sci., Ser. IIC 2000, 3: 821 -
14b
Hermeling D,Hugo R,Lechtken P,Rotermund GW, andSiegel H. inventors; DE 19,532,310. ; Chem. Abstr. 1997, 126, 199670 -
14c
Masaki M.Fukui K. Chem. Lett. 1977, 6: 151 - Triphenylphosphorus dichloride (3a) is also prepared by treatment of 2 with chlorinating reagents such as diphosgene, triphosgene, and phosphorus pentachloride.
-
15a
Rao VJ, andReddy AM. inventors; IN 1996-DE1812. ; Chem. Abstr. 2007, 146, 402090 -
15b
Li H,Chen Z,Wu L,Wang C, andHu B. inventors; CN 1,660,862. ; Chem. Abstr. 2006, 144, 488805 -
15c
Horner L.Hoffmann H.Beck P. Chem. Ber. 1958, 91: 1583 - 16 Theoretical calculation:
Mo O.Eckert-Maksic YM.Maksic ZB.Alkorta I.Elguero J. J. Phys. Chem. A. 2005, 109: 4359 - 17
Masaki M, andKaketani N. inventors; JP 53-034,725. ; Chem. Abstr. 1978, 89, 109953 - 18
Fukui K,Kaketani N,Kita J, andFujimura S. inventors; JP 55-149,293. ; Chem. Abstr. 1981, 94, 175259 - 19
Horner L.Beck P.Hoffmann H. Chem. Ber. 1959, 92: 2088 - 20
Hermeling D,Siegel H,Hugo R, andRotermund GW. inventors; EP 725,073. ; Chem. Abstr. 1996, 125, 195993 - 21
Wettling T. inventors; EP 5,48,682. ; Chem. Abstr. 1993, 119, 139547 - 22
Young DA, andBrannock KC. inventors; US 3,780,111. ; Chem. Abstr. 1974, 80, 60039 -
23a
Organic Electrochemistry
4th
ed.:
Lund H.Hammerich O. Marcel Dekker; New York: 1991. -
23b
Torii S. In Electroorganic Reduction Synthesis Kodansha & Wiley-VCH; Tokyo/Weinheim: 2006. -
23c
New Developments
in Organic Electrosynthesis
Fuchigami T. CMC; Tokyo: 2004. -
23d
Electroorganic
Chemistry, Kagaku Zokan
Vol. 86:
Osa T.Shono T.Honda K. Kagaku Dojin; Kyoto: 1980. -
24a
Santhanam KSV.Bard AJ. J. Am. Chem. Soc. 1968, 90: 1118 -
24b
Raju T,Kulangiappar K,Kulandainathan MA,Muthukumaran A, andKrishnan V. inventors; IN 2002-DE793. ; Chem. Abstr. 2007, 147, 235305 - 25
CRC
Handbook of Chemistry & Physics
74th ed.:
Lide DR. CRC Press; London: 1993. - 27
Yano T.Hoshino M.Kuroboshi M.Tanaka H. Synlett 2010, 801 - 28
Yano T.Kuroboshi M.Tanaka H. Tetrahedron Lett. 2010, 51: 698 - 29
Kuroboshi M.Yano T.Kamenoue S.Kawakubo H.Tanaka H. Tetrahedron 2011, 67: 5825 - 30
Tanaka H.Yano T.Kobayashi K.Kamenoue S.Kuroboshi M.Kawakubo H. Synlett 2011, 582
References
Since 3a is highly moisture sensitive, 3a was used without purification.
31Among thus far examined solvents, MeCN was the only solvent effective for the present purpose; thus, electro-reduction of 2a to 1a hardly occurred in THF, DMSO, DMF, and 1,4-dioxane. The electroreduction proceeded in a mixture of THF and MeCN (4:1 to 1:4).
32As a supporting electrolyte, Bu4NOTf, Bu4NBF4, and Bu4NClO4 could be used to give 1a in slightly lower yields (42, 38, and 52%, respectively). The electroreduction of 2a proceeded without supporting electrolyte to give 1a in 41% yield.
33One singlet signal appeared at δ = 32.5 ppm in the ³¹P NMR of a mixture of 2a, Me3SiCl, and Bu4NBr. On the other hand, a mixture of 2a and Me3SiBr showed a singlet peak at δ = 48.7 ppm. These results suggest that Me3SiCl would react partially with Bu4NBr to give Me3SiBr, which would inter-act with 1a to form a trace amount of [Ph3P+-O-SiMe3]Br-. However, since the electroreduction of Ph3P=O (2a) proceeded without Br- source (ref. 32), the electroreduction of 2a seems to proceed mainly through the ECEC mechanism (Scheme [6] ).