Abstract
Allylic alcohols have recently risen to prominence as a valuable
synthetic alternative to classic activated alkylating agents in
asymmetric catalysis. The intrinsic drawbacks that limited their employment
in catalytic enantioselective transformations, until recently, have
been efficiently addressed providing elegant solutions. This short
review intends to summarize the most salient and recent outcomes
in this emerging research area, highlighting the scope and limitations
of the most selective catalytic methodologies.
1 Introduction
2 Redox Metal Catalysis
2.1 C-C Bond-Forming Reactions
2.2 C-N and C-O Bond-Forming Reactions
3 Electrophilic Activation of C=C
3.1 C-C Bond-Forming Reactions
3.2 C-N and C-O Bond-Forming Reactions
4 Substitution via Carbocation Intermediates
5 Conclusions
Key words
alkylation reactions - allylic alcohols - asymmetric
synthesis - enantioselection - metal/organocatalysis
References
<A NAME="RE109611SS-1">1 </A>
Noyori R.
Nat.
Chem.
2009,
1:
5
<A NAME="RE109611SS-2">2 </A>
Official Journal
of the European Union , REGULATION (EC) No 1907/2006 , L 396.
<A NAME="RE109611SS-3A">3a </A>
Trost BM.
Brennan MK.
Synthesis
2009,
3003 ;
and references therein
<A NAME="RE109611SS-3B">3b </A>
Trost BM.
Crawley ML.
Top. Organomet.
Chem.
2012,
38:
321
<A NAME="RE109611SS-4A">4a </A>
Trost BM.
VanVranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RE109611SS-4B">4b </A>
Trost BM.
Lee C. In
Catalytic Asymmetric Synthesis
2nd
ed.:
Ojima I.
Wiley-VCH;
New
York:
2000.
p.593
<A NAME="RE109611SS-4C">4c </A>
Trost BM.
Crawley ML.
Chem.
Rev.
2003,
103:
2921
<A NAME="RE109611SS-4D">4d </A>
Pfaltz A.
Lautens M. In
Comprehensive
Asymmetric Catalysis I-III
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.833
<A NAME="RE109611SS-4E">4e </A>
Miyabe H.
Takemoto Y.
Synlett
2005,
1641
<A NAME="RE109611SS-4F">4f </A>
Trost BM.
Zhang T.
Sieber JD.
Chem. Sci.
2010,
1:
427
<A NAME="RE109611SS-4G">4g </A>
Hartwig JF.
Allylic Substitution
University Science
Books;
Sausalito CA:
2010.
For the pioneering investigation in the field see:
<A NAME="RE109611SS-4H">4h </A>
Trost BM.
Strege PE.
J.
Am. Chem. Soc.
1977,
99:
1650
For reviews on the topic:
<A NAME="RE109611SS-5A">5a </A>
Bandini M.
Tragni M.
Org. Biomol. Chem.
2009,
7:
1501
<A NAME="RE109611SS-5B">5b </A>
Bandini M.
Angew. Chem.
Int. Ed.
2011,
50:
994
<A NAME="RE109611SS-5C">5c </A>
Emer E.
Sinisi R.
Guiteras Capdevila M.
Petruzziello D.
De Vincentiis F.
Cozzi PG.
Eur.
J. Org. Chem.
2011,
647
<A NAME="RE109611SS-5D">5d </A>
Biannic B.
Aponick A.
Eur. J. Org. Chem.
2011,
6605
<A NAME="RE109611SS-6">6 </A>
Ozawa F.
Okamoto H.
Kawagishi S.
Yamamoto S.
Minami T.
Yoshifuji M.
J. Am. Chem. Soc.
2002,
124:
10968
<A NAME="RE109611SS-7A">7a </A>
Shao Z.
Zhang H.
Chem.
Soc. Rev.
2009,
38:
2745
<A NAME="RE109611SS-7B">7b </A>
Klussmann M.
Angew.
Chem. Int. Ed.
2009,
48:
7124
<A NAME="RE109611SS-7C">7c </A>
Rueping M.
Koenigs RM.
Atodiresei I.
Chem.
Eur. J.
2010,
16:
9350
<A NAME="RE109611SS-7D">7d </A>
Hashmi ASK.
Hubbert C.
Angew. Chem.
Int. Ed.
2010,
49:
1010
<A NAME="RE109611SS-7E">7e </A>
Zhou J.
Chem.
Asian J.
2010,
5:
422
<A NAME="RE109611SS-7F">7f </A>
Zhong C.
Shi X.
Eur. J. Org. Chem.
2010,
2999
For a representative selection
see: [Ir]
<A NAME="RE109611SS-8A">8a </A>
Roggen M.
Carreira EM.
J. Am. Chem. Soc.
2010,
132:
11917
[Pd]
<A NAME="RE109611SS-8B">8b </A>
Makabe H.
Kong LK.
Hirota M.
Org.
Lett.
2003,
5:
27
<A NAME="RE109611SS-8C">8c </A>
Kimura M.
Futamata M.
Shibata K.
Tamaru Y.
Chem. Commun.
2003,
234
<A NAME="RE109611SS-8D">8d </A>
Hande SM.
Kawai N.
Uenishi J.
J. Org. Chem.
2009,
74:
244
[Au]
<A NAME="RE109611SS-8E">8e </A>
Mukherjee P.
Widenhoefer RA.
Org. Lett.
2010,
12:
1184
<A NAME="RE109611SS-8F">8f </A>
Aponick A.
Biannic B.
Org. Lett.
2011,
13:
1330
<A NAME="RE109611SS-8G">8g </A>
Mukherjee P.
Widenhoefer RA.
Org. Lett.
2011,
13:
1334
<A NAME="RE109611SS-9">9 </A>
García-Yebra C.
Janssen JP.
Rominger F.
Helmchen G.
Organometallics
2004,
23:
5459
<A NAME="RE109611SS-10A">10a </A>
Kimura M.
Futamata M.
Mukai R.
Tamaru Y.
J.
Am. Chem. Soc.
2005,
127:
4592
For an early example of BPh3 assisted [Pd(0)]-catalyzed
allylic substitution with alcohols see:
<A NAME="RE109611SS-10B">10b </A>
Stary I.
Stará G.
Kocôvsky P.
Tetrahedron Lett.
1993,
34:
179
<A NAME="RE109611SS-11">11 </A>
Trost BM.
Quancard J.
J. Am. Chem. Soc.
2006,
128:
6314
<A NAME="RE109611SS-12">12 </A>
Kimura M.
Horino Y.
Mukai R.
Tanaka S.
Tamaru Y.
J. Am. Chem.
Soc.
2001,
123:
10401
<A NAME="RE109611SS-13">13 </A>
Jiang G.
List B.
Angew. Chem. Int. Ed.
2011,
50:
9471
<A NAME="RE109611SS-14">14 </A>
Cheikh RB.
Chaabouni R.
Laurent A.
Mison P.
Nafti A.
Synthesis
1983,
685
<A NAME="RE109611SS-15A">15a </A>
Yamashita Y.
Gopalarathnam A.
Hartwig JF.
J. Am. Chem. Soc.
2007,
129:
7508
See also:
<A NAME="RE109611SS-15B">15b </A>
Hartwig JF.
Stanley LM.
Acc.
Chem. Res.
2010,
43:
1461
<A NAME="RE109611SS-16">16 </A>
Defieber C.
Ariger MA.
Moriel P.
Carreira EM.
Angew. Chem. Int.
Ed.
2007,
46:
3139
<A NAME="RE109611SS-17">17 </A>
Roggen M.
Carreira EM.
Angew. Chem. Int.
Ed.
2011,
50:
5568
<A NAME="RE109611SS-18">18 </A>
Saburi H.
Tanaka S.
Kitamura M.
Angew.
Chem. Int. Ed.
2005,
44:
1730
<A NAME="RE109611SS-19">19 </A>
Tanaka S.
Seki T.
Kitamura M.
Angew.
Chem. Int. Ed.
2009,
48:
8948
<A NAME="RE109611SS-20A">20a </A>
Miyata K.
Kutsuna H.
Kawakami S.
Kitamura M.
Angew.
Chem. Int. Ed.
2011,
50:
4649
<A NAME="RE109611SS-20B">20b </A>
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
<A NAME="RE109611SS-21">21 </A>
Muzart J.
Eur.
J. Org. Chem.
2007,
3077 ;
and references therein
<A NAME="RE109611SS-22">22 </A>
Fürstner A.
Davies PW.
Angew. Chem. Int.
Ed.
2007,
46:
3410
<A NAME="RE109611SS-23A">23a </A>
Bandini M.
Eichholzer A.
Angew.
Chem. Int. Ed.
2009,
48:
9533
<A NAME="RE109611SS-23B">23b </A>
Bandini M.
Eichholzer A.
Gualandi A.
Quinto T.
Savoia D.
ChemCatChem
2010,
2:
661
<A NAME="RE109611SS-23C">23c </A>
Bandini M.
Gualandi A.
Monari M.
Romaniello A.
Savoia D.
Tragni M.
J. Organomet. Chem.
2011,
696:
338
<A NAME="RE109611SS-24">24 </A>
Catalytic
Stereoselective Friedel-Crafts Alkylations
Bandini M.
Umani-Ronchi A.
Wiley-VCH;
Weinheim:
2009.
<A NAME="RE109611SS-25A">25a </A>
Nishizawa M.
Imagawa H.
Yamamoto H.
Org. Biomol. Chem.
2010,
8:
511
<A NAME="RE109611SS-25B">25b </A>
Leyva-Pérez A.
Corma A.
Angew. Chem.
Int. Ed.
2012,
51: DOI: 10.1002/anie.201101726
<A NAME="RE109611SS-26">26 </A>
Yamamoto H.
Ho E.
Namba K.
Imagawa H.
Nishizawa M.
Chem.
Eur. J.
2010,
16:
11271
<A NAME="RE109611SS-27">27 </A>
Bandini M.
Monari M.
Romaniello A.
Tragni M.
Chem. Eur. J.
2010,
16:
14272
<A NAME="RE109611SS-28">28 </A>
Guiteras Capdevila M.
Benfatti F.
Zoli L.
Stenta M.
Cozzi PG.
Chem. Eur. J.
2010,
16:
11237
For recent general reviews see:
<A NAME="RE109611SS-29A">29a </A>
Doyle AG.
Jacobsen EN.
Chem.
Rev.
2007,
107:
5713
<A NAME="RE109611SS-29B">29b </A>
Knowles RR.
Jacobsen EN.
Proc.
Natl. Acad. Sci. U.S.A.
2010,
107:
20678
<A NAME="RE109611SS-29C">29c </A>
Kampen D.
Reisinger CM.
List B.
Top.
Curr. Chem.
2010,
291:
395
<A NAME="RE109611SS-29D">29d </A>
Schenker S.
Zamfir A.
Freund M.
Tsogoeva SB.
Eur. J. Org. Chem.
2011,
2209
<A NAME="RE109611SS-30">30 </A>
Rueping M.
Nachtsheim BJ.
Moreth SA.
Bolte M.
Angew. Chem.
Int. Ed.
2008,
47:
593
<A NAME="RE109611SS-31">31 </A> For an enantioselective alkylation
of indoles with Morita-Baylis-Hillman alcohols
see:
Qiao Z.
Shafiq Z.
Liu L.
Yu Z.-B.
Zheng Q.-Y.
Wang D.
Chen Y.-J.
Angew. Chem.
Int. Ed.
2010,
49:
7294
<A NAME="RE109611SS-32">32 </A>
Rueping M.
Uria U.
Lin M.-Y.
Atodiresei I.
J. Am. Chem. Soc.
2011,
133:
3732