Subscribe to RSS
DOI: 10.1055/s-0031-1289716
Chemistry of Halonitroethenes, Part 2: Trichloronitroethene as a Building Block for the Novel Synthesis of 5-Chloro(nitro)methyl-Substituted 1-Aryltetrazoles
Publication History
Publication Date:
17 February 2012 (online)
Abstract
Conversion of 1,1,2-trichloro-2-nitroethene with an excess of 1H-benzotriazole, followed by transamination of the resulting 1,1-bis(benzotriazol-1-yl)-2-chloro-2-nitroethene with different aniline derivatives provides the corresponding 1-(arylimino)-1-(benzotriazolyl)ethanes. Upon cycloaddition with sodium azide, these amidines enable the formation of hitherto unknown 1-aryltetrazoles bearing a chloro(nitro)methyl group in the 5-position. The structure of a 4-fluorophenyl derivative was proven by single-crystal X-ray diffraction analysis. Starting from arenediamines, this reaction affords bistetrazoles. In addition, the tetrazoles are interesting starting materials for further conversions of the side chain.
Key words
nitro compounds - nucleophilic substitution - amidines - arenes - heterocycles - tetrazoles
-
1a
Kaberdin RV.Potkin VI.Zapol’skii VA. Russ. Chem. Rev. 1997, 66: 827 -
1b
Potkin VI.Zapol’skii VA.Knizhnikov VA.Kaberdin RV.Yanuchok AA.Petkevich SK. Russ. J. Org. Chem. 2001, 37: 689 -
2a
Zapol’skii VA.Namyslo JC.Adam AEW.Kaufmann DE. Heterocycles 2004, 1281 -
2b
Zapol’skii VA.Namyslo JC.Blaschkowski B.Kaufmann DE. Synlett 2006, 3464 -
2c
Zapol’skii VA.Namyslo JC.Gjikaj M.Kaufmann DE. ARKIVOC 2007, (i): 76 -
2d
Zapol’skii VA.Namyslo JC.Gjikaj M.Kaufmann DE. Synlett 2007, 1507 -
2e
Zapol’skii VA.Namyslo JC.Altug C.Gjikaj M.Kaufmann DE. Synthesis 2008, 304 -
2f
Meyer C.Zapol’skii VA.Adam AEW.Kaufmann DE. Synthesis 2008, 2575 -
2g
Nutz E.Zapol’skii VA.Kaufmann DE. Synthesis 2009, 2719 -
2h
Zapol’skii VA.Fischer R.Namyslo JC.Kaufmann DE. Bioorg. Med. Chem. 2009, 17: 4206 -
2i
Zapol’skii VA.Namyslo JC.Gjikaj M.Kaufmann DE. Z. Naturforsch. 2010, 843 - 3
Scribner RM. J. Org. Chem. 1965, 30: 3657 -
4a
Katritzky AR.Belyakov SA. Aldrichimica Acta 1998, 35 -
4b
Katritzky AR.Lan X.Yang JZ.Denisko OV. Chem. Rev. 1998, 98: 409 -
4c
Katritzky AR.Abdel-Fattah AAA.Gromova AV.Witek R.Steel PJ. J. Org. Chem. 2005, 70: 9211 -
4d
Katritzky AR.Cai C.Suzuki K.Singh SK. J. Org. Chem. 2004, 69: 811 - 5
Clark NG.Hams AF.Leggetter BE. Nature 1963, 200: 171 -
6a
Alvarez SG.Alvarez MT. Synthesis 1997, 413 -
6b
Gunn SJ.Baker A.Bertram RD.Warriner SL. Synlett 2007, 2643 - 8
Sheldrick GM. SHELXS 97 and SHELXL 97, Program for the Solution and Refinement of Crystal Structures University of Göttingen; Germany: 1997. - 9
El Kaim L.Grimaud L.Patil P. Org. Lett. 2011, 13: 1261 - 10
Koldobskii GI. Russ. J. Org. Chem. 2006, 42: 469 -
11a
Schuren FHJ,Thijssen HMWM, andMontijn RC. inventors; EP 1,769,796. -
11b
Caldwell CG,Chiang Y,Dorn C,Finke P,Hale J,Maccoss M,Mills S, andRobichaud A. inventors; US 5,877,191. -
11c
Chen L,Dillon MP,Feng L,Hawley RC, andYang M. inventors; WO 2009,077,371. -
11d
Denhart DJ,Degnan AP,Tora GO,Han Y,Ramkumar R,Ditta JL, andGillman KW. inventors; WO 2007,121,389. - 12
Su W. Eur. J. Org. Chem. 2006, 12: 2723 - 13
Kundu D.Majee A.Hajra A. Tetrahedron Lett. 2009, 50: 2668 -
14a
Mueller B,Sauter H,Wingert H,Koenig H,Roehl F,Ammermann E, andLorenz G. inventors; EP 579,071. -
14b
Neunhoeffer H.Metz H.-J. Liebigs Ann. Chem. 1983, 1476 -
14c
Boehm H.-J,Seitz W,Hornberger W,Hoeffken HW,Pfeiffer T,Koser S, andMack H. inventors; US 6,455,671. - 15
Dighe SN.Jain KS.Srinivasan KV. Tetrahedron Lett. 2009, 50: 6139
References
X-ray crystal structure analysis for
C8H5ClFN5O2, M = 257.62
g mol-¹: A suitable single crystal
of the title compound was selected under a polarization microscope
and mounted in a glass capillary (d = 0.3
mm). The crystal structure was determined by X-ray diffraction analysis
using graphite monochromated MoKα radiation (0.71073 Å) [T = 223(2)
K], whereas the scattering intensities were collected with
a single crystal diffractometer (STOE IPDS II). The crystal structure
was solved by Direct Methods using SHELXS-978 and refined
using alternating cycles of least squares refinements against F
² (SHELXL-978).
All non-H atoms were located in Difference Fourier maps and were
refined with anisotropic displacement parameters. The H positions
were determined by a final Difference Fourier Synthesis. C8H5ClFN5O2 crystallized
in the orthorhombic space group Pna21 (No.
33), lattice parameters a = 13.458(4) Å, b = 6.058(2) Å, c = 25.281(9) Å, β = 103.88(3)˚, V = 2061.1(1) ų, Z = 8, d
calc = 1.660
g cm-³, F(000) = 1040 using
3597 independent reflections and 348 parameters. R1 = 0.0605, wR2 = 0.1023 [I > 2σ(I)], goodness of fit on F2 = 1.085,
residual electron density = 0.672 and -0.424 e Å-³.
Further details of the crystal structure investigations have been
deposited with the Cambridge Crystallographic Data Center, CCDC
826045. Copies of this information may be obtained free of charge
from The Director, CCDC, 12 Union Road, Cambridge, CB2
1EZ, UK [Fax:
+44 (1223)336 033; e-mail:
fileserv@ccdc.ac.uk or
http://www.ccdc.cam.ac.uk].