References
1a A domino reaction is defined as a process
involving two or more bond-forming transformations that take place
under constant reaction conditions without adding any additional reagent
or catalyst and in which subsequent reactions occur as a consequence
of functionality formed in a prior step.²a,b If
the addition of any further reagents or catalysts is required, consecutive reactions is a more suitable
term. See Hudlick’s discussion on this topic.¹b The
term tandem reaction is often used in
the literature as a synonym for domino reaction; however,
the term domino reaction is preferred.²a Multicomponent reactions are a subclass
of domino reactions in which three or more components combine to form
a single product that essentially incorporates all the reactants
within its structure.³a,b Furthermore, not all multicomponent
reactions are domino processes; subsequent addition of reagents
or changes in the reaction conditions are also acceptable in multicomponent
reactions.³b
1b
Hudlický T.
Chem. Rev.
1996,
96:
3
For reviews on domino reactions,
see:
2a
Tietze LF.
Chem. Rev.
1996,
96:
115
2b
Tietze LF.
Brasche G.
Gericke KM.
Domino Reactions
in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
2c
Tietze LF.
Rackelmann N.
Pure
Appl. Chem.
2004,
76:
1967
2d
Padwa A.
Bur SK.
Tetrahedron
2007,
63:
5341
2e
Bunce RA.
Tetrahedron
1995,
51:
13103
2f
Parsons PJ.
Penkett CS.
Shell AJ.
Chem. Rev.
1996,
96:
195
2g
Tietze LF.
Beifuss U.
Angew. Chem.
Int. Ed.
1993,
32:
131
For reviews on multicomponent reactions,
see:
3a
Zhu J.
Bienaymé H.
Multicomponent
Reactions
Wiley-VCH;
Weinheim:
2005.
3b
Synthesis
of Heterocycles via Multicomponent Reactions
Orru RVA.
Ruijter E.
Springer;
Berlin:
2005.
3c
Sunderhaus JD.
Martin SE.
Chem.
Eur. J.
2009,
15:
1300
3d
Gahem B.
Acc.
Chem. Res.
2009,
42:
463
3e
Saymala M.
Org.
Prep. Proced. Int.
2009,
41:
1
3f
Ramón DJ.
Yus M.
Angew.
Chem. Int. Ed.
1993,
44:
1602
3g
Bienamé H.
Hulme C.
Oddon G.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
4 For the application of multicomponent
reactions in the area of diversity-oriented synthesis, see: Biggs-Houck JE.
Younai A.
Shaw JT.
Curr. Opin. Chem. Biol.
2010,
14:
371
For recent examples, see:
5a
Liddle J.
Allen MJ.
Borthwick AD.
Brooks DP.
Davies DE.
Edwards RM.
Exall AM.
Hamlett C.
Irving WR.
Mason AM.
McCafferty GP.
Nerozzi F.
Peace S.
Philp J.
Pollard D.
Pullen MA.
Shabbir SS.
Sollis SL.
Westfall TD.
Woollard PM.
Wu C.
Hickey DMB.
Bioorg. Med. Chem. Lett.
2008,
18:
90
5b
Nishizawa R.
Nishiyama T.
Hisaichi K.
Matsunaga N.
Minamoto C.
Habashita H.
Takaoka Y.
Toda M.
Shibayama S.
Tada H.
Sagawa K.
Fukushima D.
Maeda K.
Mitsuya H.
Bioorg. Med. Chem. Lett.
2007,
17:
727
6 For an excellent review on the
synthesis of nitrones, see: Feuer H.
Nitrile Oxides, Nitrones, and Nitronates in Organic
Synthesis
Wiley-VCH;
Weinheim:
2008.
7a
Pellissier H.
Tetrahedron
2007,
63:
3235
7b
Gothelf KV.
Jørgensen KA.
Chem.
Rev.
1998,
98:
863
7c
Brandy A.
Cardona F.
Cicchi S.
Cordero FM.
Goti A.
Chem.
Eur. J.
2009,
15:
7808
7d
Bokach NA.
Kukushkin VY.
Russ.
Chem. Bull.
2006,
55:
1869
7e
Romeo G.
Iannazzo D.
Piperno A.
Romeo R.
Corsaro A.
Rescifina A.
Chiacchio U.
Mini-Rev.
Org. Chem.
2005,
2:
59
7f
Pineiro M.
Pinho e Melo TMVD.
Eur. J. Org. Chem.
2009,
5287
7g
Frederickson M.
Tetrahedron
1997,
53:
403
7h
Merino P.
Tejero T.
Molecules
1999,
4:
169
7i
Fišera L. In
Heterocycles from Carbocyclic
Precursors
El Ashry ESH.
Springer;
Berlin:
2007.
p.287
8a
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry
Toward Heterocycles and Natural Products
Padwa A.
Pearson WH.
Wiley-VCH;
Weinheim:
2002.
8b
Nair V.
Suja TD.
Tetrahedron
2007,
63:
12247
9a
Bethell D.
Adv. Phys. Org. Chem.
1998,
23:
91
9b
Gomez-Mejiba SE.
Zhai Z.
Akram H.
Deterding LJ.
Hensley K.
Smith N.
Towner RA.
Tomer KB.
Mason RP.
Ramirez DC.
Free Radical Biol.
Med.
2009,
46:
853
9c
Fangour SE.
Marini M.
Good J.
McQuaker SJ.
Shields PG.
Hartley RC.
Age
(Dordrecht, Neth.)
2009,
31:
269
9d
Berliner LJ.
Appl. Magn. Reson.
2009,
36:
157
9e
Mason RP.
Free Radical Biol. Med.
2004,
36:
1214
10a
Floyd RA.
Kopke RD.
Choi ChH.
Foster SB.
Doblas S.
Towner RA.
Free Radical Biol. Med.
2008,
45:
1361
10b
Hensley K.
Carney JM.
Steward CA.
Tabatabaie T.
Pye Q.
Floyd RA.
Int.
Rev. Neurobiol.
1997,
40:
299
10c
Floyd RA.
Hensley K.
Foster MJ.
Kelleher-Andersson JA.
Wood PL.
Mech. Ageing Dev.
2002,
123:
1021
10d
Goldstein S.
Lestage P.
Curr. Med. Chem.
2000,
7:
1255
10e
Becker DA.
Cell. Mol. Life Sci.
1999,
56:
626
10f
Durand G.
Polidori A.
Ouari O.
Tordo P.
Geromel V.
Rustin P.
Pucci B.
J.
Med. Chem.
2003,
46:
5230
10g
Sakiniene E.
Collins LV.
Arthritis Res.
2002,
4:
196
10h
Floyd RA.
Kotake Y.
Hensley K.
Nakae D.
Konishi Y.
Mol. Cell. Biochem.
2002,
234:
195
11a
Schleiss J.
Rollin P.
Tatibouet A.
Angew. Chem.
2010,
122:
587
11b
Mancheno OG.
Tangen P.
Rohlmann R.
Frohlich R.
Aléman J.
Chem. Eur. J.
2011,
17:
984
12a
Zachová H.
Man S.
Nečas M.
Potáček M.
Eur. J. Org. Chem.
2005,
2548
12b For the synthesis
of oxime 1 from the corresponding allenyl
aldehyde, see ref. 13b.
13a
Buchlovič M.
Man S.
Kislitson K.
Mathot Ch.
Potáček M.
Tetrahedron
2010,
66:
1821
13b
Buchlovič M.
Man S.
Potáček M.
Tetrahedron
2008,
64:
9953
13c
Man S.
Buchlovič M.
Potáček M.
Tetrahedron Lett.
2006,
47:
6961
13d
Buchlovič M.
Man S.
Potáček M.
Tetrahedron Lett.
2010,
51:
5801
14 For a more detailed discussion of
the reaction pathway, see refs. 13a and 13b.
15 The use of an alkali metal hydroxide
(KOH) as the base caused an increase in the side product 6; see ref. 13a.
16 The formation of nitrone 6 as the major product is in accordance
with our previous observations of the reactivity of the allenyl
oxime 1; see ref. 13a.
17 The relative conversion was determined
by using diphenyl ether as an internal standard. A value corresponding
to 100% conversion was obtained by analysis of the reaction performed
at 80 ˚C for 3 h.
18 Zinc(II) bromide and copper(II) bromide
were also tested as Lewis acid catalysts and 1,4-diazabicyclo[2.2.2]octane (DABCO)
was tested as a Lewis base catalyst; the same results were obtained
in each case.
19 For more-detailed information about
the purity of the reaction product, see the supplementary material
for this article.
20 Enolizable aldehydes were also found
to be unsuitable as reaction components.
21 We also attempted the synthesis of
nitrones functionalized at position 4 of the nitrone skeleton by
employing substituted derivatives of allenyl oxime 1;
however, none of these reactions was successful.
22 Carbon (gray), oxygen (red), and
nitrogen (blue) atoms are drawn as principal ellipses (70% probability
level). Hydrogen atoms are drawn as fixed-size spheres (cyan).
23 Crystallographic data for compounds 4a and 4l have
been deposited with the accession numbers CCDC 822444 and 822443,
respectively, and can be obtained free of charge from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44(1223)336033;
E-mail: deposit@ccdc.cam.ac.uk;
Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
24
SHELXTL,
Version 5.10
Bruker AXS Inc.;
Madison:
1997.