Synthesis 2012(6): 973-982  
DOI: 10.1055/s-0031-1289726
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel Multicomponent Domino Approach to 2,5-Bifunctionalized Five-Membered Cyclic Nitrones

Marian Buchlovič, Stanislav Man, Milan Potáček*
Department of Chemistry, Masaryk University, Kotlarská 2, 611 37 Brno, Czech Republic
Fax: +420549492688; e-Mail: potacek@chemi.muni.cz;
Further Information

Publication History

Received 11 December 2011
Publication Date:
27 February 2012 (online)

Abstract

Multicomponent reactions of 2,2-dimethylpenta-3,4-di­enal oxime with aldehydes and primary alcohols were studied and the optimum conditions for preparing a new family of 2,5-substituted five-membered cyclic nitrones were identified. This reaction offers direct access to the target structures in a single synthetic step. The scope and limitations of the reaction were evaluated, and all products were isolated and fully characterized.

    References

  • 1a

    A domino reaction is defined as a process involving two or more bond-forming transformations that take place under constant reaction conditions without adding any additional reagent or catalyst and in which subsequent reactions occur as a consequence of functionality formed in a prior step.²a,b If the addition of any further reagents or catalysts is required, consecutive reactions is a more suitable term. See Hudlick’s discussion on this topic.¹b The term tandem reaction is often used in the literature as a synonym for domino reaction; however, the term domino reaction is preferred.²a Multicomponent reactions are a subclass of domino reactions in which three or more components combine to form a single product that essentially incorporates all the reactants within its structure.³a,b Furthermore, not all multicomponent reactions are domino processes; subsequent addition of reagents or changes in the reaction conditions are also acceptable in multicomponent reactions.³b

  • 1b Hudlický T. Chem. Rev.  1996,  96:  3 
  • For reviews on domino reactions, see:
  • 2a Tietze LF. Chem. Rev.  1996,  96:  115 
  • 2b Tietze LF. Brasche G. Gericke KM. Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 2c Tietze LF. Rackelmann N. Pure Appl. Chem.  2004,  76:  1967 
  • 2d Padwa A. Bur SK. Tetrahedron  2007,  63:  5341 
  • 2e Bunce RA. Tetrahedron  1995,  51:  13103 
  • 2f Parsons PJ. Penkett CS. Shell AJ. Chem. Rev.  1996,  96:  195 
  • 2g Tietze LF. Beifuss U. Angew. Chem. Int. Ed.  1993,  32:  131 
  • For reviews on multicomponent reactions, see:
  • 3a Zhu J. Bienaymé H. Multicomponent Reactions   Wiley-VCH; Weinheim: 2005. 
  • 3b Synthesis of Heterocycles via Multicomponent Reactions   Orru RVA. Ruijter E. Springer; Berlin: 2005. 
  • 3c Sunderhaus JD. Martin SE. Chem. Eur. J.  2009,  15:  1300 
  • 3d Gahem B. Acc. Chem. Res.  2009,  42:  463 
  • 3e Saymala M. Org. Prep. Proced. Int.  2009,  41:  1 
  • 3f Ramón DJ. Yus M. Angew. Chem. Int. Ed.  1993,  44:  1602 
  • 3g Bienamé H. Hulme C. Oddon G. Schmitt P. Chem. Eur. J.  2000,  6:  3321 
  • 4 For the application of multicomponent reactions in the area of diversity-oriented synthesis, see: Biggs-Houck JE. Younai A. Shaw JT. Curr. Opin. Chem. Biol.  2010,  14:  371 
  • For recent examples, see:
  • 5a Liddle J. Allen MJ. Borthwick AD. Brooks DP. Davies DE. Edwards RM. Exall AM. Hamlett C. Irving WR. Mason AM. McCafferty GP. Nerozzi F. Peace S. Philp J. Pollard D. Pullen MA. Shabbir SS. Sollis SL. Westfall TD. Woollard PM. Wu C. Hickey DMB. Bioorg. Med. Chem. Lett.  2008,  18:  90 
  • 5b Nishizawa R. Nishiyama T. Hisaichi K. Matsunaga N. Minamoto C. Habashita H. Takaoka Y. Toda M. Shibayama S. Tada H. Sagawa K. Fukushima D. Maeda K. Mitsuya H. Bioorg. Med. Chem. Lett.  2007,  17:  727 
  • 6 For an excellent review on the synthesis of nitrones, see: Feuer H. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis   Wiley-VCH; Weinheim: 2008. 
  • 7a Pellissier H. Tetrahedron  2007,  63:  3235 
  • 7b Gothelf KV. Jørgensen KA. Chem. Rev.  1998,  98:  863 
  • 7c Brandy A. Cardona F. Cicchi S. Cordero FM. Goti A. Chem. Eur. J.  2009,  15:  7808 
  • 7d Bokach NA. Kukushkin VY. Russ. Chem. Bull.  2006,  55:  1869 
  • 7e Romeo G. Iannazzo D. Piperno A. Romeo R. Corsaro A. Rescifina A. Chiacchio U. Mini-Rev. Org. Chem.  2005,  2:  59 
  • 7f Pineiro M. Pinho e Melo TMVD. Eur. J. Org. Chem.  2009,  5287 
  • 7g Frederickson M. Tetrahedron  1997,  53:  403 
  • 7h Merino P. Tejero T. Molecules  1999,  4:  169 
  • 7i Fišera L. In Heterocycles from Carbocyclic Precursors   El Ashry ESH. Springer; Berlin: 2007.  p.287 
  • 8a Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Padwa A. Pearson WH. Wiley-VCH; Weinheim: 2002. 
  • 8b Nair V. Suja TD. Tetrahedron  2007,  63:  12247 
  • 9a Bethell D. Adv. Phys. Org. Chem.  1998,  23:  91 
  • 9b Gomez-Mejiba SE. Zhai Z. Akram H. Deterding LJ. Hensley K. Smith N. Towner RA. Tomer KB. Mason RP. Ramirez DC. Free Radical Biol. Med.  2009,  46:  853 
  • 9c Fangour SE. Marini M. Good J. McQuaker SJ. Shields PG. Hartley RC. Age (Dordrecht, Neth.)  2009,  31:  269 
  • 9d Berliner LJ. Appl. Magn. Reson.  2009,  36:  157 
  • 9e Mason RP. Free Radical Biol. Med.  2004,  36:  1214 
  • 10a Floyd RA. Kopke RD. Choi ChH. Foster SB. Doblas S. Towner RA. Free Radical Biol. Med.  2008,  45:  1361 
  • 10b Hensley K. Carney JM. Steward CA. Tabatabaie T. Pye Q. Floyd RA. Int. Rev. Neurobiol.  1997,  40:  299 
  • 10c Floyd RA. Hensley K. Foster MJ. Kelleher-Andersson JA. Wood PL. Mech. Ageing Dev.  2002,  123:  1021 
  • 10d Goldstein S. Lestage P. Curr. Med. Chem.  2000,  7:  1255 
  • 10e Becker DA. Cell. Mol. Life Sci.  1999,  56:  626 
  • 10f Durand G. Polidori A. Ouari O. Tordo P. Geromel V. Rustin P. Pucci B. J. Med. Chem.  2003,  46:  5230 
  • 10g Sakiniene E. Collins LV. Arthritis Res.  2002,  4:  196 
  • 10h Floyd RA. Kotake Y. Hensley K. Nakae D. Konishi Y. Mol. Cell. Biochem.  2002,  234:  195 
  • 11a Schleiss J. Rollin P. Tatibouet A. Angew. Chem.  2010,  122:  587 
  • 11b Mancheno OG. Tangen P. Rohlmann R. Frohlich R. Aléman J. Chem. Eur. J.  2011,  17:  984 
  • 12a Zachová H. Man S. Nečas M. Potáček M. Eur. J. Org. Chem.  2005,  2548 
  • 12b

    For the synthesis of oxime 1 from the corresponding allenyl aldehyde, see ref. 13b.

  • 13a Buchlovič M. Man S. Kislitson K. Mathot Ch. Potáček M. Tetrahedron  2010,  66:  1821 
  • 13b Buchlovič M. Man S. Potáček M. Tetrahedron  2008,  64:  9953 
  • 13c Man S. Buchlovič M. Potáček M. Tetrahedron Lett.  2006,  47:  6961 
  • 13d Buchlovič M. Man S. Potáček M. Tetrahedron Lett.  2010,  51:  5801 
  • 24 SHELXTL, Version 5.10   Bruker AXS Inc.; Madison: 1997. 
14

For a more detailed discussion of the reaction pathway, see refs. 13a and 13b.

15

The use of an alkali metal hydroxide (KOH) as the base caused an increase in the side product 6; see ref. 13a.

16

The formation of nitrone 6 as the major product is in accordance with our previous observations of the reactivity of the allenyl oxime 1; see ref. 13a.

17

The relative conversion was determined by using diphenyl ether as an internal standard. A value corresponding to 100% conversion was obtained by analysis of the reaction performed at 80 ˚C for 3 h.

18

Zinc(II) bromide and copper(II) bromide were also tested as Lewis acid catalysts and 1,4-diazabicyclo[2.2.2]octane (DABCO) was tested as a Lewis base catalyst; the same results were obtained in each case.

19

For more-detailed information about the purity of the reaction product, see the supplementary material for this article.

20

Enolizable aldehydes were also found to be unsuitable as reaction components.

21

We also attempted the synthesis of nitrones functionalized at position 4 of the nitrone skeleton by employing substituted derivatives of allenyl oxime 1; however, none of these reactions was successful.

22

Carbon (gray), oxygen (red), and nitrogen (blue) atoms are drawn as principal ellipses (70% probability level). Hydrogen atoms are drawn as fixed-size spheres (cyan).

23

Crystallographic data for compounds 4a and 4l have been deposited with the accession numbers CCDC 822444 and 822443, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033;
E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.