References and Notes
1
Manning PA.
Stroeher UH.
Morona R. In
Vibrio cholerae and Cholera: Molecular to
Global Perspectives
Wachsmuth IK.
Blake PA.
Olsvik O.
American Society for Microbiology;
Washington
DC:
1994.
p.77-94
2
Boutonnier A.
Villeneuve S.
Nato F.
Dassy B.
Fournier J.-M.
Infect.
Immun.
2001,
69:
3488
3 Szu SC, Kossaczka Z, and Robbins JB. inventors; US
7 527 797 B1.
4
Passwell JH.
Harlev E.
Ashkenazi S.
Chu C.
Miron D.
Ramon R.
Farzan N.
Shiloach J.
Bryla DA.
Majadly F.
Roberson R.
Robbins JB.
Schneerson R.
Infect.
Immun.
2001,
69:
1351
5
Kováč P. In
Protein-Carbohydrate
Interactions in Infectious Diseases
Bewley C.
Royal Society of Chemistry;
London:
2006.
p.175-220
6
Adamo R.
Kováč P.
Eur. J. Org.
Chem.
2007,
988
7
Hou S.-j.
Kováč P.
Carbohydr.
Res.
2010,
345:
999
8
Chernyak A.
Kondo S.
Wade TK.
Meeks MD.
Alzari PM.
Fournier J.-M.
Taylor RK.
Kováč P.
Wade WF.
J. Infect. Dis.
2002,
185:
950
9
Rollenhagen JE.
Kalsy A.
Saksena R.
Sheikh A.
Alam MM.
Qadri F.
Calderwood SB.
Kováč P.
Ryan ET.
Vaccine
2009,
27:
4917
10
Knirel YA.
Widmalm G.
Senchenkova SN.
Jansson P.-E.
Weintraub A.
Eur.
J. Biochem.
1997,
247:
402
11
McNaught AD.
Carbohydr.
Res.
1997,
297:
1
12
Oscarson S.
Tedebark U.
Turek D.
Carbohydr.
Res.
1997,
299:
159
13
Turek D.
Sundgren A.
Lahmann M.
Oscarson S.
Org. Biomol. Chem.
2006,
4:
1236
14
Ruttens B.
Saksena R.
Kováč P.
Eur.
J. Org. Chem.
2007,
4366
15
¹H NMR, ¹³C
NMR, and ³¹P NMR spectra we taken at
22 ˚C for solutions in CDCl3 (2-9), C6D6 (10 and 11), and
D2O (1) at 600 MHz, 150 MHz,
and 162 MHz, respectively. The chemical shifts are reported relative
to the characteristic solvent peaks. When reporting chemical shifts,
sugar residues are serially numbered, beginning with the one bearing
the aglycon, and are identified by a Roman numeral superscript.
Signals associated with colitose linked to glucosamine and galactose
are identified by superscripts V and VI, respectively. The molecular
formulas for all new compounds were confirmed by HRMS. Expected conversions
during chemical transformations were confidently confirmed in this
way. Purity of products were verified by TLC, NMR, and, in most
cases, by combustion analysis. However, some compounds tenaciously
retained traces of solvents, despite exhaustive drying, and analytical figures
for carbon could not be obtained within 0.4%. Structures
of these compounds follow unequivocally from the mode of synthesis,
NMR data and m/z values.
16
Hou S.-j.
Kováč P.
Carbohydr.
Res.
2011,
346:
1394
17
Moreau V.
Norrild JC.
Driguez H.
Carbohydr.
Res.
1997,
300:
271
18 86%, [α]
d
+11
(c 1, CHCl3). ¹H
NMR: δH-1
I = 5.05 ppm,
δH-1
II = 4.48
ppm, δC-1
I = 98.41 ppm, δC-1
II = 103.47
ppm, absence of singlet for the benzylidene proton present in the spectrum
of 2 at δ = 5.45; free
OH-4II was evidenced by upfield shift of the signal for
C-4II from δ = 77.4 ppm in 2
¹6 to δ = 66.46
ppm. TOF-HRMS: m/z calcd for C49H62BrCl3N5O13 [M + NH4]+:
1112.2593; found: 1112.2622. Anal. Calcd for C49H58BrCl3N4O13:
C, 53.64; H, 5.33; N, 3.11. Found: C, 53.66; H, 5.44; N, 5.08.
19
Sherman AA.
Yudina ON.
Mironov YV.
Sukhova EV.
Shashkov AS.
Menshov VM.
Nifantiev NE.
Carbohydr. Res.
2001,
336:
13
20 NIS (1.0 g, 4.5mmol), followed by
AgOTf (386 mg, 1.5mmol) was added to a stirred mixture of 3 (3.3 g, 3.0 mmol), ethyl 4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-1-thio-2-trichloroacetamido-β-d-glucopyranoside¹8 (4.7
g, 6.0 mmol), 4 Å MS (6.0 g), and CH2Cl2 (50
mL), which had been stirred under N2 for 30 min at r.t.
After 1.5 h, the mixture was neutralized with Et3N (0.5
mL), filtered, the filtrate was concentrated, and chromatography
(2:1 → 1:1, hexane-EtOAc) afforded 4 (4.3
g, 79%); mp 75-77 ˚C (acetone-hexane); [α]D -16.2
(c 1, CHCl3). ¹H
NMR (600 MHz, CDCl3): δ = 7.57-6.86
(m, 26 H, arom. protons, including NHI at 7.22 and NHII at
6.96), 5.56 (s, 1 H, PhCH), 5.31 (dd, J
3,4 = 3.4
Hz, J
4,5 = 1.0
Hz, 1 H, H-4IV), 5.19 (dd, J
1,2 = 7.9
Hz, J
2,3 = 10.2
Hz, 1 H, H-2IV), 5.16 (d, J
1,2 = 8.6 Hz,
1 H, H-1III), 5.00 (d, J
1,2 = 6.6
Hz, 1 H, H-1I), 4.92 (d, J = 10.6
Hz, 1 H, PhCH), 4.88-4.84 (m, 2 H, H-3IV and PhCH),
4.76-4.74 (2 d, J = 11.9,
10.5 Hz, 2 PhCH), 4.64-4.62 (m, 2 H, including H-1IV at
4.62, J
1,2 = 8.0
Hz and PhCH at 4.64, J = 11.9
Hz), 4.57 (d, J = 10.5
Hz, 1 H, PhCH), 4.47 (d, J
1,2 = 7.9
Hz, 1 H, H-1II), 4.39-4.35 (m, 4 H, H-3I,
H-3III, and PhCH2), 4.23 (dd, J = 4.9 Hz,
10.5 Hz, 1 H, H-6III
a), 4.11 (dd, J = 8.0 Hz,
11.2 Hz, 1 H, H-6IV
a), 4.02 (dd, J = 5.9 Hz,
11.2 Hz, 1 H, H-6IV
b), 3.98 (d, J = 2.9 Hz, 1 H, H-4II),
3.92 (m, 1 H, H-1′a), 3.79 (s, 3 H, OCH3),
3.87-3.71 (m, 4 H, including H-6I
a at
3.76, H-5I and H-5IV at 3.73, H-6III
b at
3.72), 3.70-3.66 (m, 2 H, including H-4I at
3.69 and H-4III at 3.67), 3.65 (t, 2.87, 1 H, H-6I
b),
3.64-3.61 (m, 2 H, including H-6II
a,b at
3.63 and H-2II at 3.62), 3.60 (m, 1 H, H-2III),
3.59-3.54 (m, 9 H, H-2′, H-3′, H-4′,
H-5′, H-2I at 3.55), 3.46-3.42 (m,
2 H, H-3II and H-5II), 3.40 (m, 1 H, H-5III), 3.35
(m, 1 H, H-6′). ¹³C NMR (150
MHz, CDCl3): δ = 103.4 (C-1II),
101.0 (PhCH), 100.1 (C-1IV), 99.8 (C-1III),
98.6 (C-1I), 92.5 (CCl3), 92.1 (CCl3),
80.6 (C-3II), 80.1 (C-2II), 79.1 (C-4III),
77.2 (C-4I), 77.1 (C-3I), 76.2 (C-3III),
75.5 (CH2), 74.2 (CH2), 73.9 (C-5I),
73.4 (CH2), 73.2 (C-5II), 73.0 (CH2), 70.9
(2 CH2), 70.7 (C-5IV), 70.5 (CH2),
70.4 (CH2), 70.3 (CH2), 69.9 (C-6II),
68.9 (C-2IV), 68.8 (CH2), 68.5 (C-6III), 68.4
(CH2), 66.7 (C-4IV), 66.2 (C-5III),
60.8 (C-6IV), 58.6 (C-2III), 57.4 (C-2I),
55.2 (OCH3), 50.6 (CH2), 33.1 (C-6I),
20.8 (COCH3), 20.7 (COCH3), 20.6 (COCH3), 20.5 (COCH3). TOF-HRMS: m/z calcd for C78H94BrCl6N6O27 [M + NH4]+: 1835.3481;
found: 1835.3502. Anal. Calcd for C49H58BrCl3N4O13:
C, 51.41; H, 4.98; N, 3.84. Found: C, 51.30; H, 5.02; N, 3.99.
21 TOF-HRMS: m/z calcd
for C70H82BrCl6N5O23K [M + K]+: 1688.2352;
found: 1688.2347.
22
David S.
Thieffry A.
Veyrieres A.
J.
Chem. Soc., Perkin Trans. 1
1981,
1796
23
Kováč P.
Taylor RB.
Glaudemans CPJ.
Carbohydr. Res.
1985,
142:
158
24 72%; [α]D -5.2
(c 1, CHCl3). ¹H
NMR: δH-1
I = 4.98 ppm,
δH-1
II = 4.48
ppm, δH-1
III = 5.03 ppm, δH-1
IV = 4.28
ppm;
¹³C NMR: δC-1
I = 98.67
ppm, δC-1
II = 103.40 ppm, δC-1
III = 100.72
ppm, δC-1
IV = 102.25 ppm.
TOF-HRMS: m/z calcd for C77H92BrCl6N6O23 [M + NH4]+:
1757.3528; found: 1757.3555. Anal. Calcd for C77H88BrCl6N5O23:
C, 53.02; H, 5.09; N, 4.02. Found: C, 53.24; H, 5.02; N, 3.90.
25 49%; [α]D -12.6
(c 1, CHCl3). ¹H
NMR: δH-1
I = 5.02 ppm,
δH-1
II = 4.43
ppm, δH-1
III = 5.07 ppm, δH-1
IV = 4.38
ppm;
¹³C NMR: δC-1
I = 98.43
ppm, δC-1
II = 103.52 ppm, δC-1
III = 100.58
ppm, δC-1
IV = 102.26 ppm; ³¹P
NMR: δP = -10.65 ppm. TOF-HRMS: m/z calcd for C79H92BrCl9N6O25P [M + NH4]+:
1949.2230; found: 1949.2305. Anal. Calcd for C79H88BrCl9N5O25P:
C, 48.97; H, 4.58; N, 3.61. Found: C, 48.75; H, 4.57; N, 3.67.
26 40%; [α]D -0.7
(c 1, CHCl3). ³¹P
NMR: δP -8.88 ppm. Anal. Calcd for
C79H88BrCl9N5O25P:
C, 48.97; H, 4.58; N, 3.61. Found: C, 48.85; H, 4.58; N, 3.61.
27
Oikawa Y.
Yoshioka T.
Yonemitsu O.
Tetrahedron
Lett.
1982,
23:
885
28 79%; [α]D -11.2
(c 0.3, CHCl3). ¹H
NMR: δH-1
I = 5.06 ppm, δH-1
II = 4.67
ppm, δH-1
III = 5.40 ppm, δH-1
IV = 4.41
ppm; ¹³C NMR: δC-1
I = 99.68
ppm, δC-1
II = 104.27 ppm, δC-1
III = 101.24 ppm, δC-1
IV = 103.86
ppm; absence of OMe signal in the ¹H spectrum,
which was present in the ¹H spectrum of 7A at δ = 3.78 ppm; ³¹P
NMR: δP = -10.22. TOF-MS: m/z = 1835.2
[M + NH4]+,
1856.1 [M + K]+.
Anal. Calcd for C71H80BrCl9N5O24P:
C, 46.92; H, 4.44; N, 3.85. Found: C, 46.71; H, 4.48; N, 3.87.
29
Epp JB.
Widlanski TS.
J. Org. Chem.
1999,
64:
293
30
Walvoort MTC.
Sail D.
van der Marell GA.
Codee JD. In
Carbohydrate Chemistry: Proven Synthetic Methods
Kováč P.
CRC/Taylor
and Francis;
Boca Raton:
2011.
31 72%; ¹H
NMR: δH-1
I = 5.03 ppm, δH-1
II = 4.49
ppm, δH-1
III = 5.12 ppm, δH-1
IV = 4.39
ppm; ¹³C NMR: δC-1
I = 98.51
ppm, δC-1
II = 103.08 ppm, δC-1
III = 100.08
ppm, δC-1
IV = 102.33; absence
of signal for C-6II at δ = 61.33 ppm
present in the spectrum of 8; ³¹P
NMR: δP = -10.46 ppm. TOF-HRMS:
m/z calcd for C78H88BrCl9N6O25P [M + NH4]+:
1933.1917; found: 1933.1948. Anal. Calcd for C78H84BrCl9N5O25P:
C, 48.76; H, 4.41; N, 3.64. Found: C, 48.60; H, 4.40; N 3.66.
32
Sakagami M.
Hamana H.
Tetrahedron Lett.
2000,
41:
5547
33 90%; ¹H
NMR: δH-1
I = 5.78 ppm, δH-1
II = 4.33
ppm, δH-1
III = 5.19 ppm, δH-1
IV = 4.51
ppm; ¹³C NMR: δC-1
I = 98.70
ppm, δC-1
II = 104.39 ppm, δC-1
III = 99.46
ppm, δC-1
IV = 103.69 ppm; absence
of the singlet for the PhCH proton present in the spectrum of 9 at δ = 5.47 ppm; ³¹P
NMR δP = -10.02 ppm. TOF-HRMS: m/z calcd for C78H90BrCl9N6O25P [M + NH4]+: 1935.2037;
found: 1935.1966.
34
Ruttens B.
Kováč P.
Synthesis
2004,
2505
35
Lemieux RU.
Hendriks KB.
Stick RV.
James K.
J.
Am. Chem. Soc.
1975,
97:
4056
36 The reaction was performed as described,¹4 except
10 equiv of the bromide was used. After 2 d, when TLC (hexane-acetone = 3:2)
showed that all glycosyl acceptor was consumed, the mixture was
worked up and chromatographed (hexane-acetone = 3:2).
The slowest moving zone contained a mixture (MS, NMR) of a pentasaccharide {TOF-MS: m/z 2249.5 [M + Na]+} having
presumably¹4 the benzylated colitose linked
to the terminal galactosyl residue and 11.
The mixture was re-chromatographed (toluene-EtOAc = 5:1)
to afford pure 11 {43%; ¹H
NMR: δ = 5.60, 5.12, 4.85, 4.46 (Η-1I-IV),
5.68, 5.35 (H-1V,VI, J
1,2 = 3.0
and 3.1 Hz, respectively]; ¹³C
NMR: 103.60, 102.82, 99.62, 98.72 (C-1I-IV),
98.39, 98.25 (C-1V,VI). ³¹P
NMR: δP = -10.31 ppm; 2 doublets
at δ = 1.82 and 1.60 (J
5,6 = ca.
6.4 Hz, H-6V,VI) ppm. TOF-HRMS: m/z calcd
for C118H134BrCl9N6O31P [M + NH4]+:
2555.5211; found: 2555.5317. Anal. Calcd for C118H130BrCl9N5O31P:
C, 55.70; H, 5.15; N, 2.75. Found: C, 55.42; H, 5.39; N. 2.67}.
37
¹H NMR: δ = 5.13, J
1,2 = 3.5
Hz; δ = 4.92, J
1,2 = 3.3
Hz (H-1V,VI), 4.82, 4.67, 4.65, 4.47 (H-1I-IV); ¹³C
NMR: δ = 103.05, 102.72, 101.24, 101.09 (C-1I-IV),
99.57, 98.04 (C-1V,VI) ppm. ³¹P
NMR: δP = -3.72 ppm. TOF-HRMS: m/z calcd for C46H79N3O31P [M + H]+:
1200.4435; found: 1200.4447.
38 Normal phase silica gel, Varian, SuperFlash
Si35 columns, using Biotage Isolera Flash Chromatograph; slowest
moving product, MeOH-25% NH4OH (10:1).