Synlett 2011(20): 2997-3001  
DOI: 10.1055/s-0031-1289889
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Sterically Controlled Stereoregulation in Aldol Reactions of 3-Aryl-1-alkyl Dihydrothiouracils

Varun Kumar, Gopal L. Khatik, Vipin A. Nair*
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, Mohali, Punjab 160 062, India
e-Mail: vn74nr@yahoo.com;
Further Information

Publication History

Received 19 July 2011
Publication Date:
11 November 2011 (online)

Abstract

Aldol reactions of 3-aryl-1-alkyl dihydrothiouracils were investigated with respect to the orientation of the exocyclic group at N1, electronic effects of the aryl substituent at N3 and the steric demands of the electrophile. The reactions highlight the preference for formation of the anti aldol diastereomer with increasing steric constraints of the reactants.

    References and Notes

  • For a comprehensive discussion on aldol reactions, see:
  • 1a Meckleburger HB. Wilcox CS. Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.99-131  
  • 1b Heathcock CH. Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.133-179  
  • 1c Heathcock CH. Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.181-238  
  • 1d Kim BM. Williams SF. Masamune S. Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.239-275  
  • 1e Mahrwald R. Modern Aldol Reactions   Wiley-VCH Verlag; Weinheim: 2004.  p.1218-1223  
  • 1f Yanagisawa A. Kimura K. Nakatsuka Y. Yamamoto H. Synlett  1998,  958 
  • 1g Mahrwald R. Costisella B. Gündogan B. Synthesis  1998,  262 
  • 1h Mahrwald R. Costisella B. Synthesis  1996,  1087 
  • For selected references, see:
  • 2a Evans DA. Bartroli J. Shih TL. J. Am. Chem. Soc.  1981,  103:  2127 
  • 2b Evans DA. Aldrichimica Acta  1982,  15:  23 
  • 2c Paterson I. Lister MA. McClure CK. Tetrahedron Lett.  1986,  27:  4787 
  • 2d Corey EJ. Imwinkelried R. Pikul S. Xiang YB. J. Am. Chem. Soc.  1989,  111:  5493 
  • 2e Oppolzer W. Blagg J. Rodriguez I. Walther E. J. Am. Chem. Soc.  1990,  112:  2767 
  • 2f Roder H. Helmchen G. Peters E.-M. Peters K. von Schmering H.-G. Angew. Chem., Int. Ed. Engl.  1984,  23:  898 
  • 2g Sankhavasi W. Yamamoto M. Kohmoto S. Yamada K. Bull. Chem. Soc. Jpn.  1991,  64:  1425 
  • 2h Drewes SE. Malissar DGS. Roos GHP. Chem. Ber.  1991,  124:  2913 
  • 2i Yan T.-H. Hung A.-W. Lee H.-C. Chang C.-S. J. Org. Chem.  1994,  59:  8187 
  • 2j Raimundo BC. Heathcock CH. Synlett  1995,  1213 
  • 2k Yokoyama Y. Mochida K. Synlett  1996,  445 
  • For selected references, see:
  • 3a Schetter B. Mahrwald R. Angew. Chem. Int. Ed.  2006,  45:  7506 
  • 3b Jiang Y. Hong J. Burke SD. Org. Lett.  2004,  61:  1445 
  • 3c Crimmins MT. Dechert A.-MR. Org. Lett.  2009,  11:  1635 
  • 3d Evans DA. Hu E. Burch JD. Jaeschke G. J. Am. Chem. Soc.  2002,  124:  5654 
  • 4a Xie L. Isenberger KM. Held G. Dahl LM. J. Org. Chem.  1997,  62:  7516 
  • 4b Yamago S. Machii D. Nakamura E. J. Org. Chem.  1991,  56:  2098 
  • 4c Heathcock CH. Buse CT. Kleschick WA. Pirrung MC. Sohn JE. Lampe J. J. Org. Chem.  1980,  45:  1066 
  • 4d Evans DA. Dart MJ. Duffy JL. Rieger DL. J. Am. Chem. Soc.  1995,  117:  9073 
  • 4e Evans DA. Rieger DL. Bilodeau MT. Urpi F. J. Am. Chem. Soc.  1991,  113:  1047 
  • 4f Evans DA. Côté B. Coleman PJ. Connell BT. J. Am. Chem. Soc.  2003,  125:  10893 
  • 5a Baldwin SW. Chen P. Nikolic N. Weinseimer DC. Org. Lett.  2000,  2:  1193 
  • 5b Santos LS. Pilli RA. J. Braz. Chem. Soc.  2003,  14:  982 
  • 5c Hoshimoto S. Matsunaga H. Kunieda T. Chem. Pharm. Bull.  2000,  48:  1541 
  • 6a Demir-Ordu O. Dogan I. Tetrahedron: Asymmetry  2010,  21:  2455 
  • 6b Narasimhulu PC. Das P. Synthesis  2009,  474 
  • 6c Padakanti S. Kumar CK. Ashok E. Das P. Synthesis  2009,  2709 
  • 7a Ulgheri F. Bacsa J. Nassimbeni L. Spanu P. Tetrahedron Lett.  2003,  44:  671 
  • 7b Spanu P. de Candia C. Ulgheri F. Tetrahedron Lett.  2010,  51:  2400 
  • 7c Ulgheri F. Orrù G. Crisma M. Spanu P. Tetrahedron Lett.  2004,  45:  1047 
  • 7d Ulgheri F. Giunta D. Spanu P. Tetrahedron  2008,  64:  11768 
  • 7e Mio S. Ichinose R. Goto K. Sugai S. Tetrahedron  1991,  47:  2111 
  • 7f Mio S. Shiraishi M. Sugai S. Haruyama H. Sato S. Tetrahedron  1991,  47:  2121 
  • 8a Chai S.-Y, Elokdah HM, and Sulkowaski TS. inventors; US Patent  5807864. 
  • 8b Ojima I, Fuchikami T, and Fujita MT. inventors; US Patent  4581452. 
  • 8c Brouwer GW, and Felauer EE. inventors; US Patent  4927451. 
  • 8d Teranishi M, Murakata C, Matsukama I, Susono M, Shuto K, and Ischikawa S. inventors; US Patent  4588729. 
  • 8e Elokdah H. Sulkowski TS. Abou-Gharbia M. Butera JA. Chai S.-Y. McFarlane GR. McKean M.-L. Babiak JL. Adelman SJ. Quinet EM. J. Med. Chem.  2004,  47:  681 
  • 8f Okawara T. Nakayama K. Furukawa M. Chem. Pharm. Bull.  1983,  31:  507 
  • 9a Kumar V. Nair VA. Tetrahedron Lett.  2010,  51:  966 
  • 9b Kumar V. Raghavaiah P. Mobin SM. Nair VA. Org. Biomol. Chem.  2010,  8:  4960 
  • 9c Khatik GL. Pal A. Apsunde TD. Nair VA. J. Heterocycl. Chem.  2010,  47:  734 
  • 9d Khatik GL. Pal A. Mobin SM. Nair VA. Tetrahedron Lett.  2010,  51:  3654 
  • 9e Khatik GL. Kaur J. Kumar V. Tikoo K. Venugopalan P. Nair VA. Eur. J. Med. Chem.  2011,  46:  3291 
  • 9f Chouhan M. Senwar KR. Sharma R. Grover V. Nair VA. Green Chem.  2011,  13:  2553 
  • 9g Khatik GL. Khurana R. Kumar V. Nair VA. Synthesis  2011,  3123 
  • 9h Sharma R. Chouhan M. Nair VA. Tetrahedron Lett.  2010,  51:  2039 
  • 9i Chouhan M. Sharma R. Nair VA. Appl. Organomet. Chem.  2011,  25:  470 
  • 9j Sharma R. Chouhan M. Sood D. Nair VA. Appl. Organomet. Chem.  2011,  25:  305 
  • 9k Randive NA. Kumar V. Nair VA. Monatsh. Chem.  2010,  141:  1329 
  • 10 Azizi N. Saidi MR. Tetrahedron  2004,  60:  383 
  • 11a Energy calculations were performed using the Gaussian 03 program. Computational calibrations were done on a model compound {(6S)-methyl-3-(4-cyano-3-chlorophenyl)--1-[(S)-1-phenylethyl]-2-thioxotetrahydropyrimidin-4(1H)-one} by energy minimizations using the semi-empirical method MM2, and ab initio calculations by Gaussian B3LYP with basis set 6-31G* (d,p). The outcomes of these independent calculations were perfectly in agreement with the structure of the molecule, as confirmed by single crystal X-ray diffraction analysis, see reference 9b
  • 11b

    The present studies involve another molecule of the same template, and the structure was optimized by ab initio calculation using Gaussian B3LYP.